Homework 2 Solutions
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2.2.17. (a) u(t,x) =

(b)
t=0: t=1
[
t=:2 t=3
1, =10,
(¢) The limit is discontinuous: lim wu(t,z) = { ,
t — 00 0, otherwise.
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0, z < -1, f(=1), z<1,
(a) llm wtia) = f(=1), z==1, (b) tm ultz)=3 fl1), zm=1
t— —o0o
f(l)a x> -1 0, x>l

2.2.26

d
(a) Suppose z = a:(t) solves d—? = c(t, z). Then, by the chain rule,

L u(t0(0) = 2 (1,2(0)) + 5= (8.2(9) B = F (1,2(6)) + e (t,2(0)) B2 (1,2(1)) =0,

since we are assuming that u(t, z) is a solution to the transport equation for all (%, z).
We conclude that u(t, w(t)) is constant.

(b) Since £(t,z) =k irnplicitly defines a solution .:r:(t) to the characteristic equation,

o:%g( z(t)) = ( o(t)) + ( a(t)) & = —%(t,w)ﬂ(t,w)g—i(taw%

and hence u = £(t,x) is a selutlon to the transport equation. Moreover, if
u(t,z) = f(g(t, 9:)), by the chain rule,

B o)+ elt,) G2 (9 = £ (6(6.9) ( 5 60) + elt,2) 5 () ) =0

according to the previous computation.



2.2.29

d
2.29. (a) Solving the characteristic equation E=1-2t produces the characteristic curves

dt

r=t—t2 + k, where £ is an arbitrary constant.

/
TN

(b) The general solution is u(t,z) = v(z — t + t2), where v(£) is an arbitrary C! function of the
characteristic variable { = = — t + ja

1
() wt2) = Ty

(d) The solution is a hump of fixed shape that, as ¢ increases, first moves to the right, slowing
down and stopping at t = %, and then moving back to the left, at an ever accelerating
speed. As i — —oo, the hump moves back to the left, accelerating.

T

24.2

(a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.

1, 1+t<z<?2—t,
Fort<%,weha.ve u(t,z) = %, l—it<z<l+t or 2—t<ax<2+t,
0, otherwise,
1
5 l—-t<ae<<2-1 l4+t<xz <24+t
Fort > 1, we have u(t,z) =4 2’ - 2 DTSE T
0, otherwise,

(b) Plotted at times ¢ =0, .25, .5,.75,1.,1.25:
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(a) The solution initially forms a trapezoidal displacement, with linearly growing height and
sides of slope %.5 expanding in both directions from 1 and 2 at unit speed. At time
= .5, the height reaches .5, and it momentarily forms a triangle. After this the diag-
onal sides propagate to the right and to the left with unit speed, as the .5 displacement
between then grows in extent.

(3(@—1+t), 1-t<az<l+t,
Fort<%,weha.veu(t,:c)=J tl l+t<e <2 —t,
3(2+t-1), 2-t<z<2+t,

otherwise,

\
.

0
Fl@—1+41t), 1-t<z<2-t,
5 2-t<z<1+t,

1(2+t-z), l+t<a<2+t,
. 0, otherwise,
(b) Plotted at times t = 0,..25.5,.75, 1., 1.5:
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For t > % , we have u(t, z) = 4

s & ss & &

2.4.4b,d

T sin2(x —sin2(x — T 2 z —t)>
(b) %fm_-:tZ(:os(Zz)dz: 2( +t)2 il t); * (d) k), ;r( ) :
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Solution: The solution to the initial value problem is
wsin2t — 2sinwt

u(t,x) = 2(w? —4)
% (sin2t — 2t cos2t) cosz, w = £2.

cos T, gt 2,

Thus,

in2t - 2sinwt
wsin : sinw ’ e
g(t) = u(t,0) = 2(w? - 4)
% (sin2t — 2tcos2t), w = %2,
is periodic when w # =2 is a rational number, quasi-periodic when w is irrational, and non-
periodic and resonant when w = 42,




2411

Solution: (a) u(t,z) = % sin(z — 2t) + § sin(z + 2t);  (b) True;

() u(t,z) = }sin(z — 2t) + 3 sin(w + 2t) + 3 — Jcos2t. .

(d) The solution remains bounded and periodic, and hence is not resonant. .

(e) Now the solution is u(t,z) = 1 sin(z — 2t) + %sin(m + 2t) + %t - %s?n 21 .h? this case, the
solution is no longer periodic or bounded, and hence a form of resonance is exhibited.
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First of all, the decay assumption implies that E(t) < oo for all t. To show E(t) is con-
stant, we prove that its derivative is 0. Using the smoothness of the solution to justify
bringing the derivative under the integral sign, we compute

dE _d (> 4 92 1 2 2 o 2
T f_oo (gug + 3¢ uy)do = f_oo (ugugy + Cuguy,) do
£ o
2 2
= fo (uu,, +u u)de=c f_oo = (u,u,)dz =0,
since u;,u, — 0 as £ — oc. Q.E.D.

2.4.15

(a) As in Exercise 2.4.13, we compute

dE [ 9 R o
dt -[—oo (ututt e umumt) 05 = f—oo [C (utumﬂ: Ea uzumt) ity ] dx

2 [*° d Ll = 2
=g f_ma(utuw)dm—af_mut dmz—ﬁf_mutdmﬁﬂ,
since a > 0. Thus, E(t) is a nonincreasing function of t.

(b) First, let u(¢,z) be the solution to the initial-boundary value problem with zero initial
conditions, and hence zero initial energy: E(0) = 0. Since 0 < E(t) < E(0) is
decreasing, and nonnegative, we conclude that E(¢) = 0. But since the energy inte-
grand is nonnegative, this can only happen if u, = u, = 0 for all (¢,z), and hence
u(t, z) must be a constant function. Moreover, its initial value is (0, z) = 0, and hence
u(t,z) = 0. With this in hand, in order to prove uniqueness, suppose u(t,z) and
Ug (t,z) are two solutions to the initial-boundary value problem. Then, by linearity,
their difference u(t,z) = (¢, x) — uy(t, ) solves the homogeneous initial-boundary
value problem analyzed in part (a), and so must be identically zero: w(¢,z) = 0. This
implies u, (¢, ) = uy(t, ) for all (t,z), and hence there is at most one solution.



