414

The solution is
oo
u(t,z) = > d, exp [— (n+ %)Zﬂrzt] sin('n,—l— %)'n’:c
n=1
where )
— : 1
d, = 2/0 f(z) 51n(n+ 7) Tz dx

are the “mixed” Fourier coefficients of the initial temperature u(0,z) = f(z). All solu-

tions decay exponentially fast to zero: u(t,z) — 0 ast — co. For most initial condi-

2
tions, i.e., those for which d; # 0, the decay rate is e™ ™ t/4 ny ¢=2-4674t  The solution
profile eventually looks like a rapidly decaying version of the first eigenmode sin %71'3:.

41.7

(a) u(t,z) = % - = Z @ +1)2 exp( (45 +2)° t) cos(4j +2)wz; (b) %

2
(c) At an exponential rate of e 47 ¢,

(d) Ast — oo, the solution becomes a vanishingly small cosine wave centered around

u = 7, namely
1 2 _4q2
u(t,z) ~ 1 2¢ A7t cos 2z
/_\
4.1.10c
4 o© —(2k+1)%t 2k L1
(c) u(t,z) = %ﬂ' T x kz::[l ¢ 2k (_::)Ei()2 * ):1:; equilibrium temperature: w(t,z) — %71'.




41.16
(a) If u(t, ) = e*t v(t, ), then

du v *v 0%
E—aeat (t,$)+e°"t 3t(t x)—'yeat 922 =V 52
_ —at s —(atyn?n?)t _ 1 .
(b) v(t,xz) = e ST b,e sinnmz, whereb, = 2f0 f(z) sinnmzdz
n=1

are the Fourier sine coeflicients of the initial data. All solutions tend to the equilibrium
value u(t,z) — 0 as t — oo at an exponential rate. For most initial data, i.e., those with
b; # 0, the decay rate is e~ . where a = a+~72; other solutions decay at a faster rate.

4.2.3d
2 & in2nmt i
d) ultz) =2 3 (- n+1 (cosZnﬂ't—l— sin2nm ) sinnmTx
T =1 2nm n
4.2.4b

(b) 1, t, cosntcosnz, sinntcosnz, forn=0,1,2,....




4.2.6
(a)

8%y 5 8%y ou ou —m<z<m,
= = = t,—m) = u(t — (t,—7) = — (¢
o7 = g Mbmm=utm, Sr-m=giem,
subject to the initial conditions
0
u0,2) = f(@), 00 =g),  -r<z<m

(b) The series solution is

o0
u(t,z) = sag+ scot+ > (ancosnct cosnz+b, cosnet sinnz
n=1

c, . d, . .
+ —I-sinnct cosnz + & sinnct smna:),
nc nc

where a,,b,, are the Fourier coefficients of f(x), while c,,,d,, are the Fourier coefficients
of g(z).

S - . . . . 1 ™ .
(c) The solution is periodic, with period 2% , if and only if ¢, = 5o f g(z)dz =0, i.e.,
T J—m
the average initial velocity is zero. Otherwise, it includes an unstable, linearly growing
mode. Note: special solutions may have a shorter period. For example, if all odd coeffi-
cients vanish, Qgit1 = sz+1 = Cyj41 = d2j+1 = 0, and ¢; = 0, then the solution has
period 7/c.

(d) The initial displacement breaks up into two half size replicas traveling with speed ¢ in
opposite directions. When the right moving wave arrives at the end point —m, it reap-
pears unchanged and still moving to the right at the other end . Similarly, when the
left moving wave arrives at the left end, it reappears on the right end still moving left.
The waves recombine into the original displacement after a time of 27 /¢, and then the
process repeats periodically.




4.2.14c

(¢) The initial displacement splits into two half sized replicas, initially moving off to the
right and to the left with unit speed. When the left moving box collides with the origin,
it reverses its direction, eventually following its right moving counterpart with the same
unit speed at a fixed distance of 3 units. During the collision, the box temporarily
increases its height before disengaging in its original upright form, but now moving to
the right.

Plotted at times £ = 0, .25, .5,.75,1.,1.25,1.75,2.,2.5, 3.5:

4.2.22

34
The solution is periodic if and only if the initial velocity has mean zero: j(; g(z)dz = 0.

For generic solutions, the period is 2£/¢, although some special solutions oscillate more
rapidly.




4.2.25

(a) The even, 27 periodic extension of the initial data is f(x) = |sinz|. Thus, by
d’Alembert’s formula, u(t,z) = % |sin(z — 2¢t) | + % | sin(z + 2¢) .

(b) u (%, Z)=2|sinZ |+ 5 |sin(37) | = 1. (c) h(t) =|cos2t| is periodic of period % .

(d) Yes. On the interval 0 < z < 7, discontinuities initially appear at ¢ = 0 and = = ,
and then propagate into the interval at speed 2, reflecting whenever they reach one of
the ends, as sketched in the following figure:

T




