Math 5286H

Problem Set 1

Due on Monday, February 6.

True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
_If I and J are ideals of a ring R, then $I \cup J$ must be an ideal.
I If R is a commutative ring and $x \in R$, then the set $\left\{r^{\prime} x r \mid r^{\prime}, r \in R\right\}$ is an ideal.
\qquad If R is a ring, the set of 2×2 upper-triangular matrices

$$
\left\{\left.\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in R\right\}
$$

is a subring of $M_{2}(R)$.
\qquad For any ring R, the set $\{r \in R \mid r \neq 0\}$ is a group under the operation of multiplication.
\qquad In a Euclidean domain, every ideal is a principal ideal.
Short answer. 5 points each for a correct answer.

1. If n and m are integers, then $(n) \cap(m)$ of \mathbb{Z} is the ideal generated by the \qquad of n and m.
2. In the ring $\mathbb{R}[x]$, the intersection of the ideals $\left(x^{5}+x^{3}-2\right)$ and $\left(x^{4}-3 x^{3}+2\right)$ is the ideal generated by the monic polynomial \qquad
Long form. 10 points.
3. The ring $\mathbb{Z}[x, y] /(x+6 y+7, x-y, x+y+1)$ is isomorphic to \mathbb{Z} / n for some positive n. Give a proof (including finding the correct value of $n)$.
