Math 5286H

Problem Set 1

Due on Monday, February 6.

- True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
 - If I and J are ideals of a ring R, then $I \cup J$ must be an ideal.
 - If R is a commutative ring and $x \in R$, then the set $\{r'xr \mid r', r \in R\}$ is an ideal.

_____ If R is a ring, the set of 2×2 upper-triangular matrices

$$\left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \middle| a, b, d \in R \right\}$$

is a subring of $M_2(R)$.

For any ring R, the set $\{r \in R \mid r \neq 0\}$ is a group under the operation of multiplication.

_____ In a Euclidean domain, every ideal is a principal ideal.

Short answer. 5 points each for a correct answer.

- 1. If n and m are integers, then $(n) \cap (m)$ of \mathbb{Z} is the ideal generated by the _____ of n and m.
- 2. In the ring $\mathbb{R}[x]$, the intersection of the ideals $(x^5 + x^3 2)$ and $(x^4 3x^3 + 2)$ is the ideal generated by the monic polynomial _____.

Long form. 10 points.

1. The ring $\mathbb{Z}[x, y]/(x+6y+7, x-y, x+y+1)$ is isomorphic to \mathbb{Z}/n for some positive *n*. Give a proof (including finding the correct value of *n*).