Math 5286H

Problem Set 3

Due on Monday, March 21.

- True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
 - _____ The ring $\mathbb{Q}[x]/(x^3-2x+1)$ is a field.
- _____ The polynomial $x^5 + yx^2 y$ is irreducible in $\mathbb{C}[x, y]$.
- _____ The polynomial $x^5 144x + 96$ is irreducible in $\mathbb{Q}[x]$.
- _____ The ring $\mathbb{C} \times \mathbb{C}$ is a principal ideal domain.
- The ring $\mathbb{Q}[x, y]/(ax + by, cx + dy)$ is finite-dimensional as a vector space over \mathbb{Q} if and only if the determinant $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is nonzero.

Short answer. 5 points each for a correct answer.

- 1. The factorization of the element $20x^4 80$ into irreducibles in $\mathbb{Z}[x]$ is _____.
- 2. The number of prime ideals in the ring $\mathbb{C}[x]/(x^2(x-1)^3(x-2)(x-4))$ is _____.

Long form. 10 points.

1. Show that, for any integer x, the integer $x^3 + x^2 - 2x - 1$ is never divisible by 3 or 5. (Hint: Modular arithmetic.)