Math 5286H

Problem Set 3
Due on Monday, March 21.
True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
_The ring $\mathbb{Q}[x] /\left(x^{3}-2 x+1\right)$ is a field.
_ The polynomial $x^{5}+y x^{2}-y$ is irreducible in $\mathbb{C}[x, y]$.
__ The polynomial $x^{5}-144 x+96$ is irreducible in $\mathbb{Q}[x]$.
\qquad The ring $\mathbb{C} \times \mathbb{C}$ is a principal ideal domain.
_The ring $\mathbb{Q}[x, y] /(a x+b y, c x+d y)$ is finite-dimensional as a vector space over \mathbb{Q} if and only if the determinant $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is nonzero.

Short answer. 5 points each for a correct answer.

1. The factorization of the element $20 x^{4}-80$ into irreducibles in $\mathbb{Z}[x]$ is \qquad
2. The number of prime ideals in the ring $\mathbb{C}[x] /\left(x^{2}(x-1)^{3}(x-2)(x-4)\right)$ is \qquad
Long form. 10 points.
3. Show that, for any integer x, the integer $x^{3}+x^{2}-2 x-1$ is never divisible by 3 or 5 . (Hint: Modular arithmetic.)
