Math 8301, Manifolds and Topology Homework 2 Due in-class on **Friday**, **Sep 21**

1. Show graphically that the simplicial complex with 7 vertices, generated by the triangles below, gives rise to a space homeomorphic to the torus.

123	127	134	145	156	167	236
245	246	257	347	356	357	467

- 2. For a 2-dimensional simplicial complex with v vertices, e edges, and f triangles, the *Euler characteristic* χ is defined to be v e + f. If this simplicial complex gives rise to a compact surface, give formulas for e and f in terms of χ and v which are nondecreasing in v.
- 3. Using the formulas from the previous problem, show that any triangulation of a compact surface of Euler characteristic 0 requires at least 7 vertices, and any of Euler characteristic 1 requires at least 6 vertices.
- 4. By identifying points on opposite sides of an icosahedron, give a triangulation of \mathbb{RP}^2 with 6 vertices and 10 faces.
- 5. Suppose that you are given a simplicial complex with set \mathcal{V} of vertices and set $\mathcal{F} \subset \mathcal{P}(\mathcal{V})$ of faces, satisfying two properties.
 - (a) Any face $U \in \mathcal{F}$ satisfies $|U| \leq 3$.
 - (b) For any vertices $a \neq b$ such that $\{a, b\} \in \mathcal{F}$, there are precisely two *other* vertices c such that the three-element set $\{a, b, c\}$ is in \mathcal{F} .

Does this simplicial complex necessarily give rise to a compact surface? Either give a proof or a counterexample. (Be careful.)