Math 8301, Manifolds and Topology
 Homework 2
 Due in-class on Friday, Sep 21

1. Show graphically that the simplicial complex with 7 vertices, generated by the triangles below, gives rise to a space homeomorphic to the torus.

$$
\begin{array}{lllllll}
123 & 127 & 134 & 145 & 156 & 167 & 236 \\
245 & 246 & 257 & 347 & 356 & 357 & 467
\end{array}
$$

2. For a 2-dimensional simplicial complex with v vertices, e edges, and f triangles, the Euler characteristic χ is defined to be $v-e+f$. If this simplicial complex gives rise to a compact surface, give formulas for e and f in terms of χ and v which are nondecreasing in v.
3. Using the formulas from the previous problem, show that any triangulation of a compact surface of Euler characteristic 0 requires at least 7 vertices, and any of Euler characteristic 1 requires at least 6 vertices.
4. By identifying points on opposite sides of an icosahedron, give a triangulation of $\mathbb{R} \mathbb{P}^{2}$ with 6 vertices and 10 faces.
5. Suppose that you are given a simplicial complex with set \mathcal{V} of vertices and set $\mathcal{F} \subset \mathcal{P}(\mathcal{V})$ of faces, satisfying two properties.
(a) Any face $U \in \mathcal{F}$ satisfies $|U| \leq 3$.
(b) For any vertices $a \neq b$ such that $\{a, b\} \in \mathcal{F}$, there are precisely two other vertices c such that the three-element set $\{a, b, c\}$ is in \mathcal{F}.

Does this simplicial complex necessarily give rise to a compact surface? Either give a proof or a counterexample. (Be careful.)

