Math 8301, Manifolds and Topology Homework 4 Due in-class on **Friday**, Oct 5

1. Suppose you are given a simplicial complex with set \mathcal{V} of vertices and set \mathcal{F} of faces. Let X be the space you get by realizing this simplicial complex. For definiteness, we'll let \mathbb{V} be the vector space with basis \mathcal{V} , and define

$$X = \bigcup_{U \in \mathcal{F}} \left\{ \sum_{v \in U} t_v \cdot v \, \middle| \, t_v \ge 0, \sum t_v = 1 \right\} \subset \mathbb{V}.$$

- (a) Given an edge $\{a, b\} \in \mathcal{F}$, define a path $p_{a,b}$ from a to b in X.
- (b) Given a triangle $\{a, b, c\} \in \mathcal{F}$, show that there is a homotopy of paths from $p_{a,c}$ to $p_{a,b} \cdot p_{b,c}$.
- 2. Suppose f(z) is a monic polynomial $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ whose coefficients are complex numbers. Recall $S^1 = \{w \in \mathbb{C} \mid |w| = 1\}$. Show that there is a sufficiently large real number R > 0 such that
 - (a) $f(z) \neq 0$ when |z| = R, and
 - (b) the resulting function $S^1 \to \mathbb{C} \setminus \{0\}$, given by $w \mapsto f(Rw)$, is homotopic to the map $w \mapsto (Rw)^n$.
- 3. Suppose M is a *n*-manifold and that $\gamma : [0,1] \to M$ is a path in M. Show that there is a homotopic path $\gamma' \sim \gamma$ and an integer *n* satisfying the following: for all $0 \leq k < n$, there is an open set $U_k \subset M$ and a homeomorphism $\phi_k : U_k \to \mathbb{R}^n$ such that
 - $\gamma'([k/n, (k+1)/n]) \subset U_k$ and
 - the composite function $\phi_k \circ \gamma' : [k/n, (k+1)/n] \to \mathbb{R}^n$ is linear.
- 4. Let \mathcal{C} be a category, and for any $a, b \in \mathcal{C}$ let $Iso_{\mathcal{C}}(a, b) \subset Hom_{\mathcal{C}}$ be the set of maps $a \to b$ which are isomorphisms in \mathcal{C} . Show that there is a groupoid \mathcal{C}^w with the same collection of objects as \mathcal{C} , but with $Hom_{\mathcal{C}^w}(a, b) = Iso_{\mathcal{C}}(a, b).$
- 5. Show that a category with one object is equivalent data to a monoid, and that a groupoid with one object is equivalent data to a group.