> Math 8302, Manifolds and Topology
> Homework 1
> Due in-class on Monday, February 4
(Note that these exercises are not identical with the corresponding ones in Lee's text.)

1. Show that two smooth atlases for a manifold $M$ determine the same maximal atlas if and only if their union is a smooth atlas.
2. Let $M$ be a nonempty topological manifold of dimension $n \geq 1$. If $M$ has a smooth structure, show that it has uncountably many distinct ones. (Hint: Begin by constructing homeomorphisms from the open unit disc $\mathbb{B}^{n}$ to itself that are smooth on $\mathbb{B}^{n} \backslash\{0\}$.)
3. Let $N=(0, \ldots, 0,1)$ be the "north pole" of $S^{n} \subset \mathbb{R}^{n+1}$, and let $S=$ $-N$ be the "south pole". Define stereographic projection $\sigma: S^{n} \backslash\{N\} \rightarrow$ $\mathbb{R}^{n}$ by

$$
\sigma\left(x^{1}, \ldots, x^{n+1}\right)=\frac{\left(x^{1}, \ldots, x^{n}\right)}{1-x^{n+1}}
$$

Let $\tilde{\sigma}(x)=-\sigma(-x)$ for $x \in S^{n} \backslash\{S\}$.
(a) For any $x \in S^{n} \backslash\{N\}$, show that $\sigma(x)$ is the point where the line through $N$ and $x$ intersects the plane where $x^{n+1}=0$.
(b) Show that $\sigma$ is bijective, and

$$
\sigma^{-1}\left(u^{1}, \ldots, u^{n}\right)=\frac{\left(2 u^{1}, \ldots, 2 u^{n},|u|^{2}-1\right)}{|u|^{2}+1} .
$$

(c) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that these two charts determine a smooth atlas on $S^{n}$.
4. An angle function on a subset $U \subset S^{1} \subset \mathbb{C}$ is a continuous function $\theta: U \rightarrow \mathbb{R}$ such that $e^{i \theta(p)}=p$ for all $p \in U$. Show that there exists an angle function $\theta$ on an open subset $U \subset S^{1}$ if and only if $U \neq S^{1}$. For any such angle function, show that $(U, \theta)$ is a smooth coordinate chart for $S^{1}$ with its standard smooth structure.
5. Show that pointwise multiplication turns the set $C^{\infty}(M)$ of smooth real-valued functions on $M$ into a commutative, associative algebra over $\mathbb{R}$.

