Math 8302, Manifolds and Topology II Homework 2 Due in-class on Wednesday, February 13

- 1. Give a definition of the complex Grassmannian $Gr_{\mathbb{C}}(n,m)$ of *n*-dimensional subspaces of \mathbb{C}^m , and show that it is a smooth manifold.
- 2. Suppose K and L are closed subsets of a smooth manifold M, and $f, g : M \to \mathbb{R}$ are smooth maps which are equal on an open set containing $K \cap L$. Show that there is a smooth map $h : M \to \mathbb{R}$ such that $h|_K = f|_K$ and $h|_L \equiv g|_L$.
- 3. Suppose M is a compact manifold. Show that there is a smooth map $M \to \mathbb{R}^N$ for some large N which is injective.
- 4. Consider the point (3, 4, 1) in Cartesian coordinates on \mathbb{R}^3 . Give a formula for how a tangent vector (a, b, c) at this point is translated into cylindrical coordinates (r, θ, z) , where $(x, y, z) = (r \cos(\theta), r \sin(\theta), z)$.
- 5. Show explicitly, using the abstract definition of a tangent vector, that the set of tangent vectors at a point p forms a vector space whose dimension equals the dimension of the manifold.