Math 8302, Manifolds and Topology II Homework 3 Due in-class on Monday, February 25

- 1. Let $f : M \to N$ be a map of smooth manifolds, and suppose N is equipped with a covariant vector field (given in local coordinates y^i by $a_i dy^i$). Show that this pulls back to a natural covariant vector field on M.
- 2. Given a map $f: M \to N$ of smooth manifolds and a vector field on M (given in local coordinates x^i by $a^i \frac{\partial}{\partial x^i}$), explain why this does not push forward to a natural vector field on N. Give an example to illustrate this; if it is a complicated one, you are working too hard.
- 3. Let M be a smooth manifold. Given a smooth atlas of M, give a smooth atlas on the tangent bundle TM. Show that a smooth function $f: M \to N$ gives rise to a smooth function $df: TM \to TN$.
- 4. Suppose M is a smooth manifold and $p: Y \to M$ is a covering map. Show that Y can be given the structure of a smooth manifold so that the projection map p is smooth.
- 5. Suppose that M is a smooth manifold and f is a smooth function from M to $\mathbb{R}^n \setminus \{0\}$. Give necessary and sufficient conditions for the smooth map

$$p \mapsto f(p)/||f(p)||$$

from M to S^{n-1} to be

- (a) a submersion,
- (b) an immersion, or
- (c) a local diffeomorphism.