Math 8302, Smooth Manifolds and Smooth Topology II Smooth Homework 5
Due smoothly in-class on Monday, Smooth March 11
Smooth Problem 1. Suppose M and N are a smooth manifolds with a smooth map $f: M \rightarrow N, X$ is a smooth vector field on M, Y is another smooth vector field on M, X^{\prime} is a smooth vector field on N, Y^{\prime} is another smooth vector field on N, and $f: M \rightarrow N$ is a smooth map such that for all $p \in M$ the map on smooth tangent spaces $d f_{p}$ satisfies $d f_{p}(X(p))=X^{\prime}(f(p))$ and $d f_{p}(Y(p))=Y^{\prime}(f(p))$. In this situation, we say that the smooth map f carries the smooth vector field X to the smooth vector field X^{\prime} (and similarly, the smooth map f carries the smooth vector field Y to the smooth vector field Y^{\prime}). Show that the smooth map f carries the smooth vector field $[X, Y]$ to the smooth vector field $\left[X^{\prime}, Y^{\prime}\right]$.

Smooth Problem 2. Suppose that M and N are smooth manifolds, f : $M \rightarrow N$ is a smooth function, X is a smooth vector field on M, X^{\prime} is a smooth vector field on N, and the smooth function f carries the smooth vector field X to the smooth vector field X^{\prime}. Show that, for any smooth map $c:(a, b) \rightarrow M$ which defines a smooth flow line for the smooth vector field X, the function $f \circ c:(a, b) \rightarrow N$ is a smooth flow line for the smooth vector field X^{\prime}.

Smooth Problem 3. Fix a vector \vec{v} in \mathbb{R}^{3}. We view \mathbb{R}^{3} as a smooth manifold using the standard smooth structure. First, show that the function which sends a point p of the smooth manifold \mathbb{R}^{3} to the vector $\vec{v} \times p$ based at p defines a smooth vector field $X_{\vec{v}}$ on \mathbb{R}^{3}. Second, if \vec{w} is another vector, determine the smooth Lie bracket $\left[X_{\vec{v}}, X_{\vec{w}}\right.$] of the smooth vector field $X_{\vec{v}}$ and the smooth vector field $X_{\vec{w}}$.

Problem of Smoothness 4. In this problem, we view \mathbb{R}^{4} as a smooth manifold using the standard smooth structure; we write points of the smooth manifold \mathbb{R}^{3} in the form $\left(x, y, x^{\prime}, y^{\prime}\right)$. Find the smooth flow lines of the smooth vector field

$$
-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-y^{\prime} \frac{\partial}{\partial x^{\prime}}+x^{\prime} \frac{\partial}{\partial y^{\prime}}
$$

and show that these smooth flows are defined for all times t in the smooth manifold \mathbb{R}. (Smooth hint: Complex numbers!)

Smoove Problem 5. Suppose M is a smooth manifold of dimension n with a chosen point p, and X_{1}, \ldots, X_{n} are smooth vector fields on M so that $\left\{X_{i}(p)\right\}$ is a basis of the smooth tangent space $T_{p}(M)$.
For each i, let $\theta_{i}: U_{i} \rightarrow M$ be a smooth flow for the smooth vector field X_{i} (defined on some smooth open submanifold $M \times\{0\} \subset U_{i} \subset M \times \mathbb{R}$).
Inductively define smooth functions f_{j} on an open neighborhood of $\overrightarrow{0} \in \mathbb{R}^{j}$ as follows. The smooth function $f_{0}: \mathbb{R}^{0} \rightarrow M$ sends 0 to p. Then

$$
f_{j}\left(t_{1}, \ldots, t_{j}\right)=\theta_{j}\left(f_{j-1}\left(t_{1}, \ldots, t_{j-1}\right), t_{j}\right)
$$

From these smooth functions, we get smooth differentials $\left(d f_{j}\right)_{\overrightarrow{0}}: \mathbb{R}^{j} \rightarrow$ $T_{p}(M)$. Show that the expression of this in the basis $\left\{X_{i}(p)\right\}$ is a matrix with ones on the diagonal and zeroes elsewhere.

* Challenge. Read carefully through the assignment to see if I still managed to miss the adjective "smooth" anywhere. (Note: I don't want to know the answer to this problem.)

