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ABSTRACT. We produce refinements of the known multiplicative structures on the Brown-Peterson spec-
trum BP, its truncated variants BPxny, Ravenel’s spectra Xpnq, and evenly graded polynomial rings over
the sphere spectrum. Consequently, topological Hochschild homology relative to these rings inherits a circle
action.

CONTENTS

1. Introduction 1
2. Review of Disk Algebras 2
3. Thom spectra 4
4. Retracts of Complex Bordism 6
5. Truncated Brown-Peterson Spectra 7
References 8

1. INTRODUCTION

If R is a ring spectrum, then the algebraic K-theory of R is often understood by means of its trace
maps to TC´

pRq “ THHpRqhS
1

, TPpRq “ THHpRqtS
1

, and TCpRq. To compute any of these
invariants, it has proven extremely fruitful to approximate the absolute Hochschild homology THHpRq

by Hochschild homology relative to some other base, i.e. perform descent along a map

THHpRq Ñ THHpR{Aq.

For example, this is one of the main ideas behind the definition of prismatic cohomology of ring spectra
given in [HRW22], and is featured in the foundational [BMS19, §11]. Works such as [AKN22, LW22,
KN19, Lee22, HW22] showcase both the computational and theoretical effectiveness of the technique.

To enact the above strategy, one needs A to admit enough structure that THHpR{Aq exists as an
S1-equivariant A-module. The action of S1 on R2 by rotation defines an S1-action on the operad E2,
and hence an S1-action on the category AlgE2

of E2-algebras. The structure necessary on A to define an
S1-A-module structure on THHpR{Aq is that of a homotopy fixed point for this action.1 The category
AlghS

1

E2
goes by many names, such as the category of framed E2-algebras, E2 ⋊ S1-algebras, or EBUp1q-

algebras. Following [AF15], we will call these Disk
BUp1q

2 -algebras; more generally, there is a notion of
DiskBn -algebra which we review below.

Here, we prove that several familiar and fundamental ring spectra admit extra structure of this form:

Theorem 1.1 (Corollary 3.7, Corollary 3.12, Corollary 4.2, Theorem 5.2). We have:

(1) At any prime p, BP admits the structure of a Disk
BUp2q

4 -MU-algebra.
(2) At any prime p and for each integer n ě 0, there is a form of BPxny which is a Disk

BUp1q

3 -MU-
algebra.

1This appears to be folklore, but we give a short proof in Corollary 2.9.
1
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(3) For each integer n ě 0, the Ravenel spectrum Xpnq admits the structure of a Disk
BUp1q

2 -algebra.
(4) For any integer n, the spherical polynomial algebra Srx2ns on a degree 2n class admits the

structure of a Disk
BUp1q

2 -algebra.

Remark 1.2. There has been a long history of work equipping the above ring spectra with highly struc-
tured multiplications. For example, Basterra–Mandell [BM13] proved that BP admits a unique E4-
algebra structure, and in [HW22] the second and fifth authors show that there are E3-MU-algebra forms
of BPxny. The above theorem strengthens these results, and can be seen as part of the general effort to
equip ring spectra with the maximum possible amount of structure.

Acknowledgements. The authors would like to thank Andrew Blumberg, Michael Hill, Michael Hop-
kins, Achim Krause, Michael Mandell, and Thomas Nikolaus for helpful conversations. During the
course of this work, Sanath Devalapurkar was supported by NSF grant DGE-2140743, Jeremy Hahn was
supported by NSF grant DMS-1803273, Andrew Senger was supported by NSF grant DMS-2103236,
Tyler Lawson was supported by NSF grant DMS-2208062, and Dylan Wilson was supported by NSF
grant DMS-1902669. This project was made possible by the hospitality of AIM.

2. REVIEW OF DISK ALGEBRAS

2.1. Definitions. We recall the algebraic setup from [AF15].

Definition 2.1. Let B P Spaces{BToppnq. Then DiskBn [AF15, Definition 2.9] is the symmetric monoidal
(8-)category of n-manifolds homeomorphic to finite disjoint unions of n-dimensional Euclidean spaces
equipped with a lift of the classifer of their tangent microbundle to B. The symmetric monoidal structure
is given by disjoint union. The category of DiskBn -algebras in a symmetric monoidal category C is defined
as

AlgDiskBn
pCq :“ Funb

pDiskBn ,Cq.

Remark 2.2. The symmetric monoidal category DiskBn is the symmetric monoidal envelope of the 8-
operad EB of [Lur17, 5.4.2.10]. Combining [Lur17, 2.2.4.9 and 2.3.3.4], we learn that the map B Ñ

BToppnq produces a local system of categories of En-algebras and that there is an equivalence:

AlgDiskBn
pCq » lim

B
AlgEn

pCq.

2.2. Disk algebras in spaces. Given any pointed space X , the functor of compactly-supported maps

Mapcp´, Xq : Diskn Ñ Spaces

is symmetric monoidal for the structure of disjoint union on the source and cartesian product on the
target. Observe that, upon restriction to the full subcategory spanned by Rn, we obtain the local system

BToppnq Ñ Spaces

associated to the action of Toppnq on MapcpRn, Xq “ ΩnX . We will denote this local system by
ΩλnX .

Proposition 2.3. The above construction refines to an adjunction

AlgDiskBn
pSpacesq

Bλn // PshpBq˚.
Ωλn

oo

This restricts to an equivalence between group-like algebras and pointwise n-connective presheaves.

Proof. In the discussion above we produced a functor

Spaces˚ Ñ AlgDiskBn
pSpacesq “ lim

B
AlgEn

pSpacesq.
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given by X ÞÑ ΩλnX . This is the same data as a map

Spaces˚ Ñ AlgEn
pSpacesq

of presheaves on B, where the source is regarded as a constant presheaf. Taking global sections then
produces the desired functor Ωλn . The existence of a left adjoint and the restricted equivalence is a
formal consequence of the known statement applied pointwise on B. □

We will also need the following computation.

Lemma 2.4. Suppose X “ Ω8M is an infinite-loop space given the structure of a DiskBn -algebra by
restriction. Then BλnX “ Ω8ΣλnM .

Proof. As in the previous proposition, observe that the construction Y ÞÑ ΩλnY refines to a functor
(which we temporarily give alternative notation)

Πλn : FunpB, Spq Ñ AlgDiskBn
pSpˆ

q

that intertwines Ω8. Here we have decorated Sp with ˆ to indicate that we are using the cartesian
monoidal structure. Since Sp is stable, this coincides with the cocartesian monoidal structure and thus
by [Lur17, 2.4.3.8] the forgetful functor

AlgDiskBn
pSpˆ

q Ñ FunpB, Spq

is an equivalence. By design, the composite of Πλn with this forgetful functor is Ωλn . In other words:
the two potentially different (additive) DiskBn -algebra structures on the spectrum ΩλnY must coincide
for any local system of spectra on B.

It then follows that ΩλnΩ8ΣλnM » X as DiskBn -algebras, which proves the result. □

Warning 2.5. If X is an E8-space then, when regarded as a DiskBn -algebra, the underlying presheaf
on B is constant. However, the presheaf BλnX need not be constant. For example, if X “ Z and
B “ BOp1q, then Bλ1Z “ Sλ1 is the one-point compactification of the sign representation. This is not
(Borel) equivariantly trivial, as seen, for example, from its integral homology.

2.3. Factorization homology. Recall from [AF15] that MfldBn denotes the symmetric monoidal (8-
)category of B-framed manifolds, which contains DiskBn as a full subcategory.

Definition 2.6. Let A be a DiskBn -algebra in a presentably symmetric monoidal 8-category C. We define
the factorization homology functor

ż

p´q

A : MfldBn Ñ C

by left Kan extension along the inclusion DiskBn ãÑ MfldBn .

This functor gives a generalization of Hochschild homology by the following theorem.

Theorem 2.7 (Ayala-Francis, Lurie). If A is a DiskB1 -algebra in C, then there is a canonical, S1-
equivariant equivalence

ż

S1

A » HHpAq,

where the latter is defined via the cyclic bar construction in C.

Encoding factorization homology as a functor on B-framed manifolds now allows us to equip relative
Hochschild homology with a circle action.

Corollary 2.8. If A is a Disk
BUp1q

n`2 -algebra in C (so that A admits an S1 “ Up1q-action), then the
augmentation HHpAq Ñ A refines to an S1-equivariant map of En-algebras.
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Proof. Apply functoriality to the inclusion pR2 ´ t0uq ˆ Rn Ñ Rn`2. Here the Up1q-framing is deter-
mined by the maps

Rn`2 Ñ ˚ Ñ BUp1q Ñ BToppn ` 2q

where the first lift is the standard trivialization, and Up1q is given the standard action on the first two
coordinates. □

Corollary 2.9. If A is a Disk
BUp1q

2 -algebra and D is an A-linear category, then THHpD{Aq has a
canonical S1-action.

Proof. By the previous corollary, base change along THHpAq Ñ A takes S1-equivariant THHpAq-
modules to S1-equivariant A-modules. Whence the claim for

THHpD{Aq “ THHpDq bTHHpAq A. □

Remark 2.10. The non-S1-equivariant analogue of Corollary 2.8 is proved as [KN18, Lemma 4.6]. The
statement of Corollary 2.8 for n “ 2 was also mentioned in [Yua21, Remark 3.4], where it was attributed
to Asaf Horev.

3. THOM SPECTRA

In this section we explain how to equip Thom spectra with Disk-algebra structures in certain situations.

3.1. Disk algebras in spaces and orientability. We now observe that orientability allows us to auto-
matically upgrade some En-algebras to Disk-algebras.

Proposition 3.1. Suppose X “ Ω8E and that there is a chosen equivalence ΣλnE » ΣnE of local
systems on B. Then every group-like En-algebra Y equipped with a En-algebra map Y Ñ X has a
canonical refinement to a DiskBn -algebra over X .

Proof. By assumption, there is a map of spaces

BnY Ñ BnX.

Using our assumption that ΣλnE » ΣnE, we obtain equivalences:

BnX » Ω8ΣnE » Ω8ΣλnE » BλnX.

Thus we get a map of DiskBUpnq

2n -algebras

ΩλnBnY Ñ X

which refines the original map. □

Warning 3.2. The action of ΩB on Y constructed above may be nontrivial.

Corollary 3.3. Let Y be a group-like E2n-algebra over BU ˆ Z. Then Y has a canonical refinement to
a Disk

BUpnq

2n -algebra over BU ˆ Z.

Proof. As ku is a module over MU, a choice of Thom class for the bundle λ2n over BUpnq gives the
desired Upnq-equivariant equivalence

Σλ2nku “ Σλ2nMU bMU ku » Σ2nMU bMU ku » Σ2nku. □

The same argument using the Atiyah-Bott-Shapiro orientation gives the following.

Corollary 3.4. Let Y be a group-like En-algebra over BO ˆ Z. Then Y has a canonical refinement to
a DiskBSpinpnq

n -algebra over BO ˆ Z.
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3.2. Main Result. Let C be presentably symmetric monoidal and denote by PicpCq the E8-groupoid
of b-invertible objects in C. Recall that, for any map X Ñ PicpCq, there is a unique extension to a
colimit-preserving functor

ThC : Spaces{X Ñ C;

if the map X Ñ PicpCq is one of E8-spaces, this functor is lax symmetric monoidal. See, e.g. [HL20,
Proposition 3.1.3] and [CCRY22, Section 7.1]. We will be mainly concerned with the cases C “ Sp and
C “ Spppq. For any 8-operad O, we then get an induced functor

ThC : AlgOpSpaces{Xq » AlgOpSpacesq{X Ñ AlgOpCq.

Applying the results from the previous subsection, we immediately deduce the following.

Theorem 3.5. Let C be presentably symmetric monoidal. Suppose X “ Ω8E, there is a chosen trivial-
ization ΣλnE » ΣnE of local systems on B, and and we are given an E8-algebra map X Ñ PicpCq.
Suppose ξ : Y Ñ X is a map of group-like En-algebras. Then ThCpξq admits a canonical DiskBn -
algebra structure.

Corollary 3.6. Suppose ξ : Y Ñ BUˆZ is a map of group-like E2n-algebras. Then the Thom spectrum
Thpξq admits a canonical DiskBUpnq

2n -algebra structure.

Corollary 3.7. Let Xpnq be the Ravenel spectrum from [Rav84, Section 3]. Then Xpnq admits the
structure of an Disk

BUp1q

2 -algebra.

Proof. By definition, Xpnq is the Thom spectrum of the double loop map Ω2BSUpnq Ñ Ω2BSU »

BU. □

Remark 3.8. Recall that there is a truncated form of the Quillen idempotent ϵm on Xppmqppq (see
[Hop84, Proposition 1.3.7]). We will write T pmq to denote the resulting summand of Xppmqppq, so
that T pmq approximates BP in the same way as Xpmq approximates MU. At p “ 2, T p1q admits
the structure of an Disk

BUp1q

2 -algebra. Indeed, in this case, T p1q “ Xp2q, so the result follows from
Corollary 3.7. At p “ 2, it is also known that T p2q admits the structure of an E2-ring. Using Corollary
3.6, one can show that T p2q in fact admits the structure of an Disk

BUp1q

2 -algebra: indeed, by [Dev22,
Remark 3.1.9], it is the Thom spectrum of the double loop map µ : ΩSpp2q Ñ BU obtained from taking
double loops of the composite

BSpp2q Ñ BSUp4q Ñ BSU » B3U.

Corollary 3.6 can also be used to study polynomial rings over the sphere spectrum. Recall the follow-
ing construction, e.g., from [HW22, Construction 4.1.1] (see also [Lur15, Section 3.4]).

Construction 3.9. Fix an integer n P Z, and let Zds denote the constant simplicial set associated to the
set of integers. Then, the free graded E1-ring Srx2n,1s on a class in degree 2n and weight 1 admits the
structure of a graded E2-ring. This can be viewed as an E2-monoidal functor ιn : Zds Ñ Sp sending
1 ÞÑ S2n; this functor factors through the inclusion PicpSpq Ñ Sp. Let us write Srx2ns to denote the
underlying E2-ring in Sp.

Using the E2-monoidal functor ιn, one can define a spectral analogue of the “shearing” functor on
graded spectra. The following is an adaptation of [Rak20, Proposition 3.3.4]. Let C be a stable pre-
sentably symmetric monoidal 8-category, and let Cgr “ FunpZds,Cq denote the 8-category of graded
objects in C. The composite

(1) Zds ˆ Cgr ιnˆev
ÝÝÝÝÑ PicpSpq ˆ C

b
ÝÑ C

is a lax E2-monoidal functor. Using the universal property of Day convolution, this in turn defines a lax
E2-monoidal functor shn : Cgr Ñ Cgr which acts on a graded object by Mp‚q ÞÑ Mp‚qr2n‚s. It is
easy to see that this functor is in fact E2-monoidal and defines an equivalence shn : Cgr „

ÝÑ Cgr. In fact,
shn » sh˝n

1 .
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Proposition 3.10. The shearing equivalence shn : Cgr „
ÝÑ Cgr admits the structure of a Disk

BUp1q

2 -
monoidal functor.

Proof. It suffices to show that the composite eq. (1) admits the structure of a DiskBUp1q

2 -monoidal functor.
The map b : PicpSpq ˆ Cgr Ñ C is evidently symmetric monoidal, so it in turn suffices to show that ιn
admits the structure of a Disk

BUp1q

2 -monoidal functor. But ιn can be factored as the composite

Zds ¨n
ÝÑ Zds Ñ BU ˆ Zds Ñ PicpSpq,

where the second map is the inclusion of the factor in the product. The inclusion Zds Ñ BUˆZds is one
of group-like E2-algebras (for instance, it can be obtained via Bott periodicity by taking double loops of
the map BUp1q Ñ BU), so the claim follows from the discussion in section 3.1. □

Remark 3.11. The functor sh1 does not admit an E3-monoidal structure. Otherwise, Srx2s would admit
the structure of an E3-algebra in Sp. To see that this is impossible, observe that if Srx2s did admit the
structure of an E3-algebra, the class x2

2 : S4 Ñ Srx2s would factor as

S4

�� ((
Σ2RP 4

2
„ // Conf2pR3q` bΣ2 pS2qb2 // Srx2s.

Composing with the projection Srx2s Ñ S4, this would show that the bottom cell of Σ2RP 4
2 is unat-

tached; but this is false, since the 4- and 6-cells of Σ2RP 4
2 are connected by η.

It is easier to show that the inclusion Zds Ñ BUˆZds is not a map of E3-algebras. Otherwise, taking
the 3-fold bar construction would show that there is a map KpZ, 3q Ñ SU which is an isomorphism on
H3p´;Zq. This is impossible: for instance, the resulting composite

KpZ, 3q Ñ SU Ñ KpZ, 3q

would be nonzero on H6p´;Zq; but H6pSU;Zq “ 0.

Corollary 3.12. Let j P Z. Then, Srx2j,1s admits the structure of a Disk
BUp1q

2 -algebra in Spgr.

Proof. Let Srx0,1s “ Σ8
`N denote the free E1-algebra in graded spectra on a class in weight 1 and

degree zero; this in fact admits the structure of an E8-ring in Spgr, and Srx2j,1s » shjSrx0,1s. Since shj
is DiskBUp1q

2 -monoidal by Proposition 3.10, this implies that Srx2j,1s admits the structure of a DiskBUp1q

2 -
algebra in Spgr. □

Remark 3.13. There is an evident generalization of Corollary 3.12 to multi-graded Disk
BUp1q

2 -algebras
in several variables.

4. RETRACTS OF COMPLEX BORDISM

The following result allows us to equip BP with a Disk-algebra structure.

Theorem 4.1. Every E4-algebra map MUppq Ñ MUppq refines to a Disk
BUp2q

4 -algebra map.

Proof. We would like to show that the map

Map
Disk

BUp2q

2
pMUppq,MUppqq Ñ MapE4

pMUppq,MUppqq

is surjective on path components. Under the identification Alg
Disk

BUp2q

2
» Alg

hUp2q

E2
, we may identify this

map with the inclusion of fixed points

MapE4
pMUppq,MUppqqhUp2q Ñ MapE4

pMUppq,MUppqq



EXAMPLES OF DISK ALGEBRAS 7

for some Up2q-action on the source. To show that this is surjective on path components, it will suffice to
prove that the homotopy fixed point spectral sequence for the source collapses. For this, it further suffices
to prove that π˚MapE4

pMUppq,MUppqq is concentrated in even degrees. Using the Thom isomorphism
of [AB19, Corollary 3.18], we have:

MapE4
pMUppq,MUppqq » MapE4

pMU,MUppqq

» MapE4
pΣ8

`BU,MUppqq

» Map˚pBUx6y,B4GL1MUppqq

» MappΣ´4Σ8
`BUx6y, gl1MUppqq.

Since BUx6y has an even cell decomposition, and the homotopy of gl1MUppq is concentrated in even de-
grees, the Atiyah-Hirzebruch spectral sequence collapses and the answer is concentrated in even degrees.
This completes the proof. □

Corollary 4.2. BP admits the structure of a Disk
BUp2q

4 -algebra under MU.

Proof. Apply the previous theorem to the E4-algebra idempotent produced by Basterra-Mandell in
[BM13]. □

Warning 4.3. Unlike the Disk-algebra structures produced on Thom spectra, the refinements of the
self-maps of MU, and hence of the algebra structure on BP, are highly non-canonical.

5. TRUNCATED BROWN-PETERSON SPECTRA

In [HW22], the second and fifth authors produced E3-MU-algebra forms of BPxny. In this section,
we explain how to modify the argument in loc. cit. to produce Disk

BUp1q

3 -MU-algebra structures.

5.1. Review of obstruction theory. If O is an operad, then the deformation theory of an O-algebra A
is governed by the cotangent complex, which is an operadic module over A. In the case of interest, it
follows from [Lur17, 7.3.4.13] that the cotangent complex of a DiskBn -algebra A lies in

Mod
DiskBn
A pCq :“ lim

B
ModEn

A pCq.

The category of En-A-modules is equivalent to the category of modules over the enveloping algebra

UpnqpAq :“

ż

Rn´t0u

A,

so an alternative perspective on DiskBn -A-modules is via the equivalence

Mod
DiskBn
A pCq » ModUpnqpAqpFunpB,Cqq.

In these terms, the cotangent complex and enveloping algebra are related to one another using the
following theorem:

Theorem 5.1 (Lurie, Francis). If A is a DiskBn -algebra, then there is a fiber sequence

UpnqpAq Ñ A Ñ ΣλnLA

of DiskBn -A-modules.

Proof. The proof given in [Fra13, Theorem 2.26] applies verbatim for general B. □



8 SANATH DEVALAPURKAR, JEREMY HAHN, TYLER LAWSON, ANDREW SENGER, AND DYLAN WILSON

5.2. Main result.

Theorem 5.2. There are forms of BPxny which are Disk
BUp1q

3 -MU-algebras, and for which the maps

BPxny Ñ BPxn ´ 1y

are maps of DiskBUp1q

3 -MU-algebras.

Proof. The proof in [HW22, Theorem 2.0.6] goes through mutatis mutandis using the description of the
cotangent complex above, except that we replace the use of [HW22, Theorem 2.5.5] with the following
refinement: for any virtual complex representation V of Up1q, the spectrum

´

ΣV map
U

p3q

MUpBPxnyq
pBPxny,BPxnyq

¯hUp1q

has homotopy groups concentrated in even degrees; moreover, the map

π˚

´

ΣV map
U

p3q

MUpBPxnyq
pBPxny,BPxnyq

¯hUp1q

Ñ π˚map
U

p3q

MUpBPxnyq
pBPxny,BPxnyq

is surjective.
In fact, this statement is an immediate consequence of Theorem 2.5.5. in loc. cit.: since the homotopy

groups of map
U

p3q

MUpBPxnyq
pBPxny,BPxnyq (and hence of any even suspension) are concentrated in even

degrees, the homotopy fixed point spectral sequence for Up1q collapses and is again concentrated in even
degrees. □
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