MATH 1272: CALCULUS II
 MIDTERM TEST II: ANSWERS TO THE SAMPLE PROBLEM SET

INSTRUCTOR: ALEX VORONOV

Problem 1. $\pi / 4$
Problem 2.

$$
\frac{\pi}{6}(5 \sqrt{5}-1)
$$

Problem 3.

$$
\left(\frac{3}{4}, \frac{9}{10}\right)
$$

Problem 4.

$$
y=-\frac{1}{2} \ln \left(e^{-2}-x^{2}\right)
$$

Problem 5.

$$
y(t)=200\left(1-e^{-t / 500}\right)
$$

Problem 6. (1) $m(100)=200 \cdot 2^{-5 / 8}$
(2) $t=160 \ln 40$

Problem 7.

$$
x=-\frac{y^{2}}{4}+2, \quad 0 \leq y \leq 2
$$

The graph is the piece of the parabola with vertex $(2,0)$, opening to the left, enclosed between $y=0$ and $y=2$. The direction of increasing t should be indicated in both ways along the curve.

$$
\begin{array}{rll}
t=0, & x=2, & y=0 \\
t=\pi / 2, & x=1, & y=2 \\
t=\pi, & x=2, & y=0
\end{array}
$$

Problem 8.

$$
y=4(x-5)
$$

The tangent is horizontal at $t=0$ and $t= \pm \sqrt{2}$. The second derivative is $3 t^{2}-2$, while its value at $t=2$ is 10 .

Problem 9.

$$
\frac{\pi^{2}}{2}
$$

Problem 10. It is the circle of radius $3 / 2$ centered at $(3 / 2,0)$, i.e., the one given by the equation

$$
\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}
$$

Date: October 22, 2003.

The integral for the arclength is as follows:

$$
\int_{0}^{\frac{3 \pi}{2}} \sqrt{9 \cos ^{2} \theta+9 \sin ^{2} \theta} d \theta=\frac{9}{2} \pi
$$

Problem 11.

$$
\int_{-\cos ^{-1}(1 / 3)}^{\cos ^{-1}(1 / 3)} \frac{1}{2}(1-3 \cos \theta)^{2} d \theta
$$

Problem 12. The vertices: $(\pm 1,0)$, the foci: $(\pm \sqrt{2}, 0)$, the asymptotes: $y= \pm x$. Problem 13.

$$
\lim _{n \rightarrow \infty}\{\sqrt{n+2}-\sqrt{n}\}=0
$$

