MATH 1272: CALCULUS II MIDTERM TEST III: A SAMPLE PROBLEM SET

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test.

Remember that a correct answer with incorrect or no work shown is not counted. Good luck!
Problem 1. Assume $\sum_{n=1}^{\infty} a_{n}$ is a series whose k th partial sum is $5-\frac{k}{3^{k}}$. Find a_{k}. What is the sum of the series equal to?
Problem 2. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{3+2^{-n}}
$$

converges.
Problem 3. Show that the following series converges and find its sum:

$$
\sum_{n=1}^{\infty} \frac{2^{n-1}+3^{n}}{4^{n}}
$$

Problem 4. Determine whether the series

$$
\sum_{n=1}^{\infty} 2 n e^{-n}
$$

converges.
Problem 5. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{5 n}{2 n^{2}-5}
$$

converges.
Problem 6. Does the series

$$
\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}
$$

converge?
Problem 7. Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{8^{n} x^{n}}{(n+3)^{2}}
$$

Problem 8. Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty}(-1)^{n} 3 n x^{n}
$$

Date: November 25, 2003.

Problem 9. Evaluate the following indefinite integral as a power series and find the radius of convergence:

$$
\int \frac{x}{1+x^{4}} d x
$$

Problem 10. Starting from the formula $\sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x}$, valid for $|x|<1$, find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}
$$

Problem 11. Find the Maclaurin series for $x \cos x^{3}$.
Problem 12. Find an equation of the sphere that passes through $(2,-1,7)$ and has center $(1,-3,5)$.
Problem 13. Find the unit vector in the direction of the vector $\langle-2,3,-1\rangle$.
Problem 14. For which values of x are the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal?
Problem 15. Find the projection of the vector $\langle-2,3,-1\rangle$ onto a direction orthogonal to both of the vectors $\langle 1,0,-2\rangle$ and $\langle 0,1,1\rangle$.

