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LECTURE 1: CONFORMAL FIELD THEORY

ALEXANDER A. VORONOV

Introduction

From a mathematician's point of view, physics is a science which studies too
particular things. For example, quantum �eld theory is basically the science about
computing integrals over Rn , not even general integrals, but integrals of the follow-
ing very speci�c form Z

Rn

f1(x) : : : fN(x)e
�S(x)dx:

Physicists have developed very advanced methods to compute such integrals. For
example, the famous Feynman diagram technique allows us to compute the above
integral for a rather particular function S(x), a small perturbation of a positive
de�nite quadratic form in R

n . Sometimes, elaborate techniques of physicists to
compute simple things �nd an amazing application to very general things in math-
ematics, such as invariants of smooth four-manifolds.

The purpose of this course is to give a mathematical introduction to two-di-
mensional quantum �eld theory (2d QFT), which includes such theories as confor-
mal �eld theory (CFT), topological quantum �eld theory (TQFT), string theory,
quantum gravity, and cohomological �eld theory. 2d QFT studies some particular
objects related to Riemann surfaces (that is why 2d) or complex algebraic curves.
These objects are close counterparts of the mathematical theory of operads, whose
study is another purpose of the course. 2d QFT supplies ideas and motivation for
such �elds of mathematics as enumerative algebraic geometry, theory of moduli
spaces, representation theory, low-dimensional topology, theory of knots, and a few
others. That is why I believe it should be standard part of education of every
serious mathematician.

Theory of operads was created by algebraic topologists (J. P. May, J. M. Board-
man, R. M. Vogt) in the seventies, but the very structure, later dubbed an \operad"
by Peter May, had made its appearance in the sixties in the works of Jim Stashe�
on loop spaces and Murray Gerstenhaber on algebraic structures arising in defor-
mation theory. Theory of operads is basically the theory of operations, as the
name suggests, and no wonder, operations, such as the cup product, the Steenrod
squares, the Dyer-Lashof operations, are an essential part of algebraic topology,
whereas any product or bracket is what algebra is all about. Operads seemed to
have played their role in the seventies, in the problem of recognizing a loop space
in a given topological space, and since then has become in topology something like
a steam engine. But in the nineties, the operads unexpectedly came back (Let me
remind you that steam engines are not so harmful to the environment), allowing
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a break-through (V. Ginzburg, M. M. Kapranov) in understanding such compli-
cated algebraic structures as A1- and L1-algebras, as well as the discovery of the
relevance of operads to 2d QFT (J. Stashe�, M. Kontsevich, E. Getzler), which
provided an e�ective tool of studying the complicated algebraic structure of the
physical theories. Learning how it works will be our end-of-term goal.

1. Basic notions

1.1. Conformal �eld theory. Conformal �eld theory (CFT) provides a geometric
background of string theory, which is considered as one of the steps toward grand

uni�cation, the uni�cation of all forces of nature in a single theory. Whereas stan-
dard physics treats a particles as an ideal point, string theory thinks of a particle
as a tiny loop or string. Respectively, a particle propagating in space along a path,
a world line, becomes a string propagating along a world sheet, which is an ori-
entable surface. The standard theory is quantized by using Feynman integral over
the path space, whereas Feynman integral in string theory is an integral over the
space of orientable surfaces. This integral can ultimately be integrated out to an
integral over the moduli space of Riemann surfaces. To write down such an integral,
one usually has to begin with certain data associated to Riemann surfaces. This
data, called a CFT, should satisfy certain axioms. We will now describe G. Segal's
approach to CFT, see [5, 3, 6].

A conformal �eld theory (CFT ) is a complex vector space V , called the state

space, together with a correspondence

m

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

n 7�! j�i : V 
m ! V 
n

An orientable surface �
bounding m+ n circles

A linear operator j�i

Here a surface � is a (not necessarily connected) compact Riemann surface, a
complex manifold of dimension one. It has labeled (enumerated), nonoverlapping
holomorphic holes, which are nothing but biholomorphic embeddings � : D2 ! �,
where D2 = fz 2 C j jzj < 1g is the standard unit disk. One can think of � as
the choice of a holomorphic coordinate z at the hole. The �rst m � 0 circles are
called inputs and the remaining n � 0 circles are called outputs. The notation V 
n

means V 
 � � � 
 V n times.
This correspondence should satisfy the following axioms.
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1. Conformal invariance: The linear mapping j�i is invariant under isomor-
phisms of the surface � taking holes to the corresponding holes and preserving
the holomorphic coordinates there.

2. Permutation equivariance: The correspondence � 7! j�i commutes with
the action of the symmetric groups Sm and Sn on surfaces and linear mappings
by permutations of inputs and outputs.

3. Factorization (sewing) property: Sewing along the boundaries of the
holes corresponds to composing of the corresponding operators:

7�! V 
m ! V 
n ! V 
k

The sewing of the outputs of a
surface with the inputs of an-
other surface

The composition of the
corresponding linear op-
erators

Here sewing along the boundaries of two holomorphic holes with coordinates
z1 and z2 means identifying two tubular neighborhoods 1=r < jz1j < r and
1=r < jz2j < r, r > 1, of the boundaries via z1 = 1=z2.

4. Normalization:

7�! id : V ! V

The unit circle The identity operator

Here the unit circle is understood as the \cylinder of zero width", the Riemann
sphere S2 = R with the standard coordinate z and two holomorphic holes of
radius one around 0 and 1.

5. Smoothness: Sometimes one requires that the operator j�i depends
smoothly (or continuously) on the Riemann surface �. To make this assump-
tion, one needs to assume that V is at least a topological space, introduce a
structure of smooth compex manifold on the space of linear mappings, and
think of � as a point of the in�nite dimensional moduli space of Riemann
surfaces with holes. This axiom will not be essential to our considerations for
the time being, and we will omit it. If instead of smoothness, we assumed
holomorphicity in a certain sense, then we would be talking about a chiral

CFT or a vertex operator algebra (VOA).
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Remark 1.1. This de�nition describes in fact a CFT of central charge c = 0. An
arbitrary central charge CFT relaxes Axiom 3: the operator j�2 [�1i correspond-
ing to the result of sewing of two Riemann surfaces �1 and �2 is equal to the
composition of two operators j�2i � j�1i up to a nonzero factor �:

j�2 [ �1i = �j�2i � j�1i:

Throughout this course we will be mostly dealing with c = 0 theories.

Exercise 1. The constant � generalizes the notion of a two-cocycle on Di�(S1).
Find out an equation of this type on �. Is this the only condition � must satisfy?

1.2. Categorical Terms. These data and axioms can be formulated equivalently
using tensor categories and functors, see [4] or [2] regarding basics of tensor (sym-
metric monoidal) categories. Within this approach, a CFT is a multiplicative
functor from a \topological" tensor category \Segal" to a \linear" tensor cate-
gory \Vect". An object of the category Segal is an integer n � 0. A morphism
between two numbers m and n is an isomorphism class of Riemann surfaces with
m + n holomorphic holes. The identity morphism of an object n is the union of
n zero-width cylinders. The addition of numbers and the disjoint union of Rie-
mann spheres introduce tensor products on the objects and the morphisms, i.e.,
the structure of a tensor category on Segal.

The other category Vect is the category of complex vector spaces, not necessarily
�nite-dimensional, with the usual tensor product.

Exercise 2. Show that a CFT is a tensor functor from category Segal to category
Vect. Ignore Axiom 5, which translates as a certain smoothness property of the
functor.

1.3. PROP's. At this point, we have come very closely to the notion of a PROP,
see e.g., J. Adams [1], the big brother of an operad, so that it would be unwise not
to mention it here.

De�nition 1.2. A PROP is a tensor category whose objects are the nonnegative
integers with the tensor product given by

m
 n = m+ n:

PROP stands for PROducts, the compositions of morphisms in the category, and
Permutations.

Note that we have kept the freedom of choice regarding the morphisms: the above
category Segal with morphisms given by complex cobordisms, i.e., Riemann surfaces
bounding holomorphic circles, is the �rst example of a PROP. Another example is
the endomorphism PROP of a vector space V : the set of morphisms from m to n

is de�ned as Mor(m;n) = Hom(V 
m; V 
n). Exercise 2 can be reformulated as the
following proposition.

Proposition 1.3. A CFT is a morphism from the PROP Segal to the endomor-

phism PROP of a vector space V .

A PROP is indeed the big brother of an operad: an operad is basically the part
Mor(n; 1) of a PROP. What this means will be the topic of the lecture after the
next lecture.
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