MATH 4281: INTRODUCTION TO MODERN ALGEBRA SAMPLE MIDTERM TEST I (WITH SELECTED SOLUTIONS)

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test.

Good luck!

Problem 1. Prove that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

Problem 2. Prove that

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

Problem 3. Find gcd(210, 48) in two different ways and find two integers s and t such that 210s + 48t = gcd(210, 48).

Problem 4. Find an integer x such that

$$x \equiv 2 \pmod{5},$$
$$3x \equiv 1 \pmod{8}.$$

Problem 5. Find $[20877^{24}]$ and $[20878^{24}]$ in \mathbb{Z}_{16} . [Hint: Use Euler's theorem.]

Problem 6. Is $x^3 - 17x + 2$ irreducible in $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and $\mathbb{C}[x]$? Explain why.

Solution: First of all, note that a polynomial of degree 3 factors in K[x], if and only if it factors as $(ax + b)(cx^2 + dx + e)$ in K[x]. If $K = \mathbb{Z}$, then since ac = 1, $a = \pm 1$, and we can assume without loss of generality that a = 1 by moving the -1 over to the second factor. If K is \mathbb{Q} , \mathbb{R} , or \mathbb{C} , we can move a over to the second factor and conclude that a polynomial of degree 3 is reducible in K[x], if and only if it has a factor x - b. Thus, for any K, a polynomial of degree 3 is reducible in K[x], if and only if it has a root in K.

In $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$: By one of the exercises, a rational root r/s in the reduced form will have r|2 and s|1. Thus we can assume s=1 and $r=\pm 1$ or ± 2 . Plug these into the polynomial, and we see that none of these is a root. Thus it has no rational and in particular no integral roots.

In $\mathbb{R}[x]$: Call our polynomial p(x). Obviously, p(-10000) < 0, whereas p(10000) > 0. Since p(x) is continuous, by the Intermediate Value Theorem, it assumes all intermediate values, such as 0. Thus, it has a root, and therefore will be reducible over \mathbb{R} .

In $\mathbb{C}[x]$ every polynomial of degree at least 1 has a root and will thereby be reducible.

Date: February 16, 2011.

1

Problem 7. List all motion symmetries of a regular pentagon.

Solution: Put the pentagon in the xy plane with its centroid at the origin. Take the rotation r of the pentagon about the z axis by $360^{\circ}/5 = 72^{\circ}$, counterclockwise if you look from the above, and the 180° rotation a about the axis passing through one of the vertices and the midpoint of the opposite side. These are symmetries of the pentagon. One can generate more symmetries by these:

$$\{e,r,r^2,r^3,r^4,a,ra,r^2a,r^3a,r^4a\}.$$

The rotations e, r, r^2, r^3 , and r^4 are counterclockwise rotations by $0^\circ, 72^\circ, 2 \cdot 72^\circ, 3 \cdot 72^\circ$, and $4 \cdot 72^\circ$, respectively, and rotate the space by different angles less than 360°. Thus, they must be pairwise distinct. If $r^k a = r^m a$, then by multiplying by a^{-1} on the right, we get $r^k = r^m$ with $0 \le k, m \le 4$, and we saw that all these are different for different k and m. Finally, $r^k \ne r^m a$, because $r^m a$ flips the pengaton over and r^k does not. Thus, we have got at least 10 distinct symmetries.

On the other hand, any symmetry of the pentagon must map a particular vertex, call it A_1 , to another vertex, for which there are 5 different choices, and the counterclockwise adjacent vertex A_2 will be mapped to either of the nearby vertices to the vertex where A_1 went to. If we know where A_1 and A_2 go, we will know where the remaining vertices of the pentagon will go. There are $5 \cdot 2 = 10$ choices for that. Thus, there should be not more than 10 symmetries, and the above list shows all of them.