Math 4606. Fall 2006.

EXAM 1

ID: Date:

Name:

- 1. (20 points) Let X and Y be two non-empty sets and let f be a one-to-one function from X to Y. Let A be a subset of X. Show that $f(X \setminus A)$ is a subset of $Y \setminus f(A)$.
- **2.** (20 points) Let f be a function from \mathbb{R}^2 to \mathbb{R} given by

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + 5y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Does the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Why? Find the limit if it does.

3. (20 points) Let f, g and h be three real-valued functions on \mathbb{R}^n satisfying

$$g(x) \le f(x) \le h(x)$$
 for all $x \in \mathbb{R}^n$.

Let $a \in \mathbb{R}^n$ and $L \in \mathbb{R}$ and suppose that

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$$

Prove that $\lim_{x\to a} f(x) = L$.

4. (20 points) Show that the set

$$S = \{(x,y) \in \mathbb{R}^2 : xy > 5 \text{ and } y + x^2 + 3x < 13\}$$

is an open set in \mathbb{R}^2 .

5. (20 points) Find the limit

$$\lim_{k \to \infty} \frac{-3k^3 + 8k^2 - 7k + 11}{4k^3 - k^2 + 5}.$$