Math 4606. Spring 2007 Solutions to Homework 10

Problem 7.3.3. $\sum_{0}^{\infty} a_n x^{kn}$ converges when $|x^k| < R$ and diverges when $|x^k| > R$, so the radius of convergence is $R^{1/k}$.

Problem 7.3.5a. $e^{-t^2} = \sum_{0}^{\infty} (-t^2)^n / n!$ for $t \in \mathbb{R}$. By Theorem 7.18, $\int_0^x e^{-t^2} dt = \sum_{0}^{\infty} (-1)^n x^{2n+1} / n! (2n+1)$ for $x \in \mathbb{R}$.

Problem 7.3.7. If f(x) = f(-x), then $\sum a_n x^n = \sum (-1)^n a_n x^n$, so by Corollary 7.22, $a_n = (-1)^n a_{-n}$ for all n and hence $a_n = 0$ for n even.

Problem 8.1.2. By the double angle formula, $\sin^2 \theta = (1 - \cos 2\theta)/2$, and the right-hand side is the Fourier series. The reason is as follows. If a function $f(\theta)$ is already represented as a finite sum of $\cos n\theta$ and $\sin n\theta$, say, $A_0/2 + \sum_{n=1}^{k} (A_n \cos n\theta + B_n \sin n\theta)$, then the Fourier coefficients a_n and b_n can be read off as $a_n = B_n$ and $b_n = B_n$ for all n. To see that, you can rewrite the trigonometric sum as a finite sum $f(\theta) = \sum_{n=-k}^{k} C_n e^{in\theta}$ by solving the system of equations

$$A_n = C_n + C_{-n}, \qquad B_n = i(C_n - C_{-n}),$$
 (1)

for C_n and C_{-n} . Then for each $m \in \mathbb{Z}$, the Fourier coefficient c_m for $f(\theta)$ will be given by the following computation:

$$c_{m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-im\theta} d\theta = \frac{1}{2\pi} \sum_{n=-k}^{k} C_{n} \int_{-\pi}^{\pi} e^{i(n-m)\theta} d\theta = C_{m}$$

Thus, the Fourier coefficients c_n may be read off from $\sum C_n e^{in\theta}$ as $c_n = C_n$. Since the trigonometric Fourier coefficients a_n and b_n are obtained from c_n 's by Equations (1) rewritten for lower-case letters, it implies that $a_n = A_n$ and $b_n = B_n$ for all n.

Problem 8.1.3.

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2m\theta}{4m^2 - 1}$$

Problem 8.1.4. f is even, so $b_n = 0$ and $a_n = (2/\pi) \int_0^{\pi} \theta^2 \cos n\theta d\theta$. The constant term is $a_0/2 = (1/\pi) \int_0^{\pi} \theta^2 d\theta = \pi^2/3$. For n > 0, integration by parts gives $\int \theta^2 \cos n\theta d\theta = (2/n^2)\theta \cos n\theta + ((\theta^2/n) - (2/n^3))\sin n\theta$, so $a_n = (2/\pi)(2/n^2)(-1)^n \pi = 4(-1)^n/n^2$.

Problem 8.1.5. Here it is easier to use the exponential form of the series: $c_n = (1/2\pi) \int_{-\pi}^{\pi} e^{b\theta} e^{-in\theta} d\theta = \left[e^{(b-in)\theta} \right]_{-\pi}^{\pi} / 2\pi (b-in) = (-1)^n (e^{b\pi} - e^{-b\pi}) / 2\pi (b-in) = (-1)^n (\sinh b\pi) / \pi (b-in).$

Problem 8.1.9. Suppose $(k-1)P \leq a < kP$ for some integer k. Then $\int_{a}^{a+P} = \int_{a}^{kP} + \int_{kP}^{a+P}$ (the integrand is f(x)dx in all integrals). By periodicity

of f and changing variables from x to x - P, the second integral on the righthand side equals $\int_{(k-1)P}^{a}$, so adding it to the first integral gives $\int_{(k-1)P}^{kP}$. Another application of periodicity combined with a change of variable from x to x - (k - 1)P shows that the last integral is equal to $\int_{0}^{P} f(x) dx$.