
Math 4606. Spring 2007

Solutions to Homework 10

Problem 7.3.3.
∑∞

0 anxkn converges when |xk| < R and diverges when
|xk| > R, so the radius of convergence is R1/k.

Problem 7.3.5a. e−t2 =
∑∞

0 (−t2)n/n! for t ∈ R. By Theorem 7.18,∫ x

0
e−t2dt =

∑∞
0 (−1)nx2n+1/n!(2n + 1) for x ∈ R.

Problem 7.3.7. If f(x) = f(−x), then
∑

anxn =
∑

(−1)nanxn, so by Corol-
lary 7.22, an = (−1)na−n for all n and hence an = 0 for n even.

Problem 8.1.2. By the double angle formula, sin2 θ = (1 − cos 2θ)/2, and
the right-hand side is the Fourier series. The reason is as follows. If a function
f(θ) is already represented as a finite sum of cos nθ and sinnθ, say, A0/2 +∑k

n=1(An cos nθ + Bn sinnθ), then the Fourier coefficients an and bn can be
read off as an = Bn and bn = Bn for all n. To see that, you can rewrite the
trigonometric sum as a finite sum f(θ) =

∑k
n=−k Cneinθ by solving the system

of equations
An = Cn + C−n, Bn = i(Cn − C−n), (1)

for Cn and C−n. Then for each m ∈ Z, the Fourier coefficient cm for f(θ) will
be given by the following computation:

cm =
1
2π

∫ π

−π

f(θ)e−imθdθ =
1
2π

k∑
n=−k

Cn

∫ π

−π

ei(n−m)θdθ = Cm.

Thus, the Fourier coefficients cn may be read off from
∑

Cneinθ as cn = Cn.
Since the trigonometric Fourier coefficients an and bn are obtained from cn’s
by Equations (1) rewritten for lower-case letters, it implies that an = An and
bn = Bn for all n.

Problem 8.1.3.
2
π
− 4

π

∞∑
m=1

cos 2mθ

4m2 − 1

Problem 8.1.4. f is even, so bn = 0 and an = (2/π)
∫ π

0
θ2 cos nθdθ. The

constant term is a0/2 = (1/π)
∫ π

0
θ2dθ = π2/3. For n > 0, integration by

parts gives
∫

θ2 cos nθdθ = (2/n2)θ cos nθ + ((θ2/n) − (2/n3)) sinnθ, so an =
(2/π)(2/n2)(−1)nπ = 4(−1)n/n2.

Problem 8.1.5. Here it is easier to use the exponential form of the series: cn =
(1/2π)

∫ π

−π
ebθe−inθdθ =

[
e(b−in)θ

]π

−π
/2π(b − in) = (−1)n(ebπ − e−bπ)/2π(b −

in) = (−1)n(sinh bπ)/π(b− in).
Problem 8.1.9. Suppose (k − 1)P ≤ a < kP for some integer k. Then∫ a+P

a
=

∫ kP

a
+

∫ a+P

kP
(the integrand is f(x)dx in all integrals). By periodicity
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of f and changing variables from x to x − P , the second integral on the right-
hand side equals

∫ a

(k−1)P
, so adding it to the first integral gives

∫ kP

(k−1)P
. Another

application of periodicity combined with a change of variable from x to x− (k−
1)P shows that the last integral is equal to

∫ P

0
f(x)dx.
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