Math 4606. Spring 2007

Solutions to Homework 10

Problem 7.3.3. $\sum_{0}^{\infty} a_{n} x^{k n}$ converges when $\left|x^{k}\right|<R$ and diverges when $\left|x^{k}\right|>R$, so the radius of convergence is $R^{1 / k}$.

Problem 7.3.5a. $e^{-t^{2}}=\sum_{0}^{\infty}\left(-t^{2}\right)^{n} / n$! for $t \in \mathbb{R}$. By Theorem 7.18, $\int_{0}^{x} e^{-t^{2}} d t=\sum_{0}^{\infty}(-1)^{n} x^{2 n+1} / n!(2 n+1)$ for $x \in \mathbb{R}$.

Problem 7.3.7. If $f(x)=f(-x)$, then $\sum a_{n} x^{n}=\sum(-1)^{n} a_{n} x^{n}$, so by Corollary 7.22, $a_{n}=(-1)^{n} a_{-n}$ for all n and hence $a_{n}=0$ for n even.

Problem 8.1.2. By the double angle formula, $\sin ^{2} \theta=(1-\cos 2 \theta) / 2$, and the right-hand side is the Fourier series. The reason is as follows. If a function $f(\theta)$ is already represented as a finite sum of $\cos n \theta$ and $\sin n \theta$, say, $A_{0} / 2+$ $\sum_{n=1}^{k}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)$, then the Fourier coefficients a_{n} and b_{n} can be read off as $a_{n}=B_{n}$ and $b_{n}=B_{n}$ for all n. To see that, you can rewrite the trigonometric sum as a finite sum $f(\theta)=\sum_{n=-k}^{k} C_{n} e^{i n \theta}$ by solving the system of equations

$$
\begin{equation*}
A_{n}=C_{n}+C_{-n}, \quad B_{n}=i\left(C_{n}-C_{-n}\right) \tag{1}
\end{equation*}
$$

for C_{n} and C_{-n}. Then for each $m \in \mathbb{Z}$, the Fourier coefficient c_{m} for $f(\theta)$ will be given by the following computation:

$$
c_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i m \theta} d \theta=\frac{1}{2 \pi} \sum_{n=-k}^{k} C_{n} \int_{-\pi}^{\pi} e^{i(n-m) \theta} d \theta=C_{m}
$$

Thus, the Fourier coefficients c_{n} may be read off from $\sum C_{n} e^{i n \theta}$ as $c_{n}=C_{n}$. Since the trigonometric Fourier coefficients a_{n} and b_{n} are obtained from c_{n} 's by Equations (1) rewritten for lower-case letters, it implies that $a_{n}=A_{n}$ and $b_{n}=B_{n}$ for all n.

Problem 8.1.3.

$$
\frac{2}{\pi}-\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2 m \theta}{4 m^{2}-1}
$$

Problem 8.1.4. f is even, so $b_{n}=0$ and $a_{n}=(2 / \pi) \int_{0}^{\pi} \theta^{2} \cos n \theta d \theta$. The constant term is $a_{0} / 2=(1 / \pi) \int_{0}^{\pi} \theta^{2} d \theta=\pi^{2} / 3$. For $n>0$, integration by parts gives $\int \theta^{2} \cos n \theta d \theta=\left(2 / n^{2}\right) \theta \cos n \theta+\left(\left(\theta^{2} / n\right)-\left(2 / n^{3}\right)\right) \sin n \theta$, so $a_{n}=$ $(2 / \pi)\left(2 / n^{2}\right)(-1)^{n} \pi=4(-1)^{n} / n^{2}$.

Problem 8.1.5. Here it is easier to use the exponential form of the series: $c_{n}=$ $(1 / 2 \pi) \int_{-\pi}^{\pi} e^{b \theta} e^{-i n \theta} d \theta=\left[e^{(b-i n) \theta}\right]_{-\pi}^{\pi} / 2 \pi(b-i n)=(-1)^{n}\left(e^{b \pi}-e^{-b \pi}\right) / 2 \pi(b-$ $i n)=(-1)^{n}(\sinh b \pi) / \pi(b-i n)$.

Problem 8.1.9. Suppose $(k-1) P \leq a<k P$ for some integer k. Then $\int_{a}^{a+P}=\int_{a}^{k P}+\int_{k P}^{a+P}$ (the integrand is $\bar{f}(x) d x$ in all integrals). By periodicity
of f and changing variables from x to $x-P$, the second integral on the righthand side equals $\int_{(k-1) P}^{a}$, so adding it to the first integral gives $\int_{(k-1) P}^{k P}$. Another application of periodicity combined with a change of variable from x to $x-(k-$ 1) P shows that the last integral is equal to $\int_{0}^{P} f(x) d x$.

