Math 4606. Spring 2007

Solutions to Homework 7

Problem 2.2.2. (a) See the answer in the back of the text.
(b) $d f(x, y, z)=\left(x+z^{2}\right)^{-1} d x+3 y^{2} d y+2 z\left(x+z^{2}\right)^{-1} d x ; d f(1,1,0)=d x+3 d y$; $f(1.1,1.2,-0.1)-f(1,1,0) \approx 0.1+3(0.2)=0.7$.

Problem 2.2.8. Assume $n=2$ for simplicity; the general case follows by an elaboration of the argument as in the proof of Theorem 2.19. Suppose $\left|\partial_{1} f\right| \leq C$ and $\left|\partial_{2} f\right| \leq C$ on S. Given $\mathbf{a} \in S$, let $r>0$ be small enough so that $B(r, \mathbf{a}) \subset S$. If $|\mathbf{h}|<r$, by the Mean Value Theorem we have

$$
\begin{aligned}
|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})| \leq & \left|f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}+h_{2}\right)\right| \\
& +\left|f\left(a_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)\right| \\
\leq & C\left(\left|h_{1}\right|+\left|h_{2}\right|\right)
\end{aligned}
$$

which implies the continuity of f at \mathbf{a}.
Problem 2.3.2. (a) and (c) See the answer in the back of the text.
(b) $\partial_{x} w=e^{x-3 y} f_{1}+2 x f+2 /\left(x^{2}+1\right), \partial_{y} w=-3 e^{x-3 y} f_{1}+2 y^{3} f_{3} / \sqrt{y^{4}+4}$.

Problem 2.3.5. Both formulas for the tangent plane at $(a, b, f(a, b))$ amount to $z-f(a, b)=A(x-a)+B(y-b)$, where $A=\partial_{x} f(a, b)$ and $B=\partial_{y} f(a, b)$.

Problem 2.3.6. These are all similar; I will just do (d). If $F(x, y, z)=$ $x y z^{2}-\log (z-1)$, we have $\partial_{x} F=y z^{2}, \partial_{y} F=x z^{2}$, and $\partial_{z} F=2 x y z-(z-1)^{-1}$, so $\nabla F(-2,-1,2)=(-4,-8,7)$. Hence the tangent plane is given by $-4(x+$ $2)-8(y+1)+7(z-2)=0$, or $7 z=4 x+8 y+30$.

Problem 2.4.2. (a) If S is convex, we can apply Theorem 2.39 to get $f(\mathbf{b})-$ $f(\mathbf{a})=\partial_{1} f(\mathbf{c})\left(b_{1}-a_{1}\right)=0$.
(b) An example with $n=2$: Let S be the square $(-1,1) \times(-1,1)$ with the segment $[0,1)$ on the y axis removed. Define f on S by $f(x, y)=0$ if $y \leq 0$, $f(x, y)=-y^{2}$ if $y>0$ and $x<0$, and $f(x, y)=y^{2}$ if $y>0$ and $x>0$. Then $\partial_{x} f=0$ on S, but $f(-x, y) \neq f(x, y)$ for $y>0$.

