Math 4606. Spring 2007

Solutions to Homework 9.5

Problem 3.1.3. With $u=\left(x^{2}+y^{2}+2 z^{2}\right)^{1 / 2}$ and $F(x, y, z)=u-\cos z$, we have $F_{y}=y / u$ and $F_{z}=2 z / u+\sin z$, so $F_{y}(0,1,0)=1$ and $F_{z}(0,1,0)=0$. Hence the equation can be solved for y, but not z.

Problem 3.1.5. With $G(x, y)=F(F(x, y), y)$, we have $G_{y}=F_{1}(F(x, y), y) F_{2}(x, y)+$ $F_{2}(F(x, y), y)$, so $G_{y}(0,0)=F_{2}(0,0)\left(F_{1}(0,0)+1\right) \neq 0$ when $F_{2}(0,0) \neq 0$ and $F_{1}(0,0) \neq-1$.

Problem 3.1.7. With $(z, w)=\mathbf{F}(x, y, u, v)=\left(u^{3}+x v-y, v^{3}+y u-x\right)$, we have $D \mathbf{F}=\left(\begin{array}{cccc}v & -1 & 3 u^{2} & x \\ -1 & u & y & 3 v^{2}\end{array}\right)$. At $(0,1,1,-1)$, then, we have $D \mathbf{F}=$ $\left(\begin{array}{cccc}-1 & -1 & 3 & 0 \\ -1 & 1 & 1 & 3\end{array}\right)$. The determinants of all 2×2 submatrices of this matrix are nonzero, so the equations can be solved for any pair of variables.

Problem 3.1.9. With $u=x^{2}+y^{2}+z^{2}, v=x y+t z$, and $w=x z+$ $t y+e^{t}$, we have $\frac{\partial(u, v, w)}{\partial(x, y, z)}=\operatorname{det}\left(\begin{array}{ccc}2 x & 2 y & 2 z \\ y & x & t \\ z & t & x\end{array}\right)$, which equals 8 at $(x, y, z, t)=$ $(-1,-2,1,0)$. So the equations can be solved for x, y, z.

Problem 7.1.1. (a) $\lim _{k \rightarrow \infty} f_{k}(x)=0$, if $0 \leq x<1$, while $\lim _{k \rightarrow \infty} f_{k}(1)=1$. We have $\left|f_{k}(x)-0\right| \leq(1-\delta)^{k} \rightarrow 0$ for $x \in[0,1-\delta]$, so the convergence is uniform there.
(b) $\lim _{k \rightarrow \infty} f_{k}(0)=0$, while $\lim _{k \rightarrow \infty} f_{k}(x)=1$, if $0<x \leq 1$. We have $\left|f_{k}(x)-1\right|=1-\delta^{1 / k} \rightarrow 0$ for $x \in[\delta, 1]$, so the convergence is uniform there.
(c) $\lim _{k \rightarrow \infty} f_{k}(x)=0$, if $x \in[0, \pi] \backslash\{\pi / 2\}$, while $\lim _{k \rightarrow \infty} f_{k}(\pi / 2)=1$. We have $\left|f_{k}(x)-0\right| \leq \sin ^{k}(\pi / 2-\delta) \rightarrow 0$ for $x \in[0, \pi / 2-\delta]$ or $x \in[\pi / 2+\delta, 1]$, so the convergence is uniform there.
(d) $\left|f_{k}(x)\right| \leq 1 / k$ for all x, so $f_{k} \rightarrow 0$ uniformly on \mathbb{R}.
(e) $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for all $x \in[0, \infty)$, but the maximum of f_{k} on this interval is $e^{-1}\left(\right.$ at $\left.x=k^{-1}\right)$, so the convergence is not uniform. However, $\left|f_{k}(x)-0\right| \leq k \delta e^{-k \delta}$ for $x \geq \delta$, provided $k \geq \delta^{-1}$, and $\lim _{k \rightarrow \infty} k \delta e^{-k \delta}=0$; hence the convergence is uniform on $[\delta, \infty)$.
(f) $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for all $x \in[0, \infty)$, but the maximum of f_{k} on this interval is $e^{-1}($ at $x=k)$, so the convergence is not uniform. However, $\mid f_{k}(x)-$ $0 \mid \leq b / k$ for $x \leq b$, so the convergence is uniform on $[0, b]$ for any b.
(g) $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for all $x \neq 1$, since $f_{k}(x)<x^{k}$ for $x<1$ and $f_{k}(x)<$ x^{-k} for $x>1$, and $\lim _{k \rightarrow \infty} f_{k}(1)=1 / 2$. For any $\delta>0$ we have $\left|f_{k}(x)-0\right| \leq$
$(1-\delta)^{k}$ for $x \in[0,1-\delta]$ and $\left|f_{k}(x)-0\right| \leq(1+\delta)^{-k}$ for $x \in[1+\delta, \infty)$, so the convergence is uniform on these intervals.

Problem 7.1.2. (a) The series is a geometric series, convergent for $x>0$ to the sum $1 /\left(1-e^{-x}\right)$. The convergence is absolute and uniform on $[\delta, \infty)$ for any $\delta>0$, by the M-test with $M_{n}=e^{-n \delta}$. The sum is continuous on $(0, \infty)$.
(b) The series is absolutely and uniformly convergent on $[-1,1]$ by the $\mathrm{M}-$ test with $M_{n}=1 / n^{2}$ for $n>0$; it diverges elsewhere since the nth term $\nrightarrow 0$. The sum is continuous on $[-1,1]$.
(c) The series is absolutely and uniformly convergent on $[-2+\delta, 2-\delta]$ for any $\delta>0$ by the M-test with $M_{n}=n(1-\delta / 2)^{n} / 8$, while $\sum_{n} M_{n}$ converges by the ratio test. It diverges for $|x| \geq 2$ since the nth term $\nrightarrow 0$. The sum is continuous on $(-2,2)$.
(d) The series is absolutely and uniformly convergent on \mathbb{R} by the M-test with $M_{n}=1 / n^{3}$; the sum is everywhere continuous.
(e) The series is absolutely and uniformly convergent on \mathbb{R} by the M-test with $M_{n}=1 / n^{2}$; the sum is everywhere continuous.
(f) The series is absolutely and uniformly convergent on $[1+\delta, \infty)$ for any $\delta>0$ by the M-test with $M_{n}=n^{-1-\delta}$, and it diverges for $x \leq 1$ (Theorem 6.9). The sum is continuous on $(1, \infty)$.

Problem 7.1.3. Let M be the maximum value of $|g(x)|$ on $[0,1]$. Given $\varepsilon>0$, choose $\delta .0$ so that $|g(x)|<\varepsilon$ for $1-\delta \leq x \leq 1$. Then if k is large enough so that $(1-\delta)^{k}<\varepsilon / m$, we have $\left|f_{k}(x)\right| \leq M x^{k}<\varepsilon$ for $x \leq 1-\delta$ and $\left|f_{k}(x)\right| \leq|g(x)|<\varepsilon$ for $x>1-\delta$. That is, $\left|f_{k}(x)\right|<\varepsilon$ for all $x \in[0,1]$, when k is sufficiently large, so $f_{k} \rightarrow 0$ uniformly on $[0,1]$.

Problem 7.1.4. Given $\delta>0$. let $I_{1}=[-1+\delta, 1-\delta]$, and for $k \geq 2$ let $I_{k}=[k-1+\delta, k-\delta]$. For a given k, let $M_{n}=\max _{x \in I_{k}}\left|x^{2}-n^{2}\right|^{-1}$. Then $M_{n}<\infty$ for all n, and $M_{n} / n^{-2} \rightarrow 1$ as $n \rightarrow \infty$, so $\sum M_{n}<\infty$. The M-test therefore gives uniform convergence of the series for $x \in I_{k}$ or $-x \in I_{k}$.

Problem 7.1.5. The series fails to converge absolutely by comparison to $\sum 1 / n$. However, $1 /\left(x^{2}+n\right)$ decreases to 0 as $n \rightarrow \infty$ for each x, so by the alternating series test, the series converges for each x, and the absolute divergence between the k th partial sum and the full sum is at most $1 /\left(x^{2}+k+1\right) \leq 1 /(k+1)$. The latter quantity is independent of x and tends to zero as $k \rightarrow \infty$, so the convergence is uniform.

