
Math 4606. Spring 2007

Solutions to Another Sample Midterm Exam 2

Problem 1. Take f(x) = sin 1
x , which is bounded by 1 and continuous on

(0, 1) as a composition of continuous functions.
We need to show that there exists ε > 0 such that for each δ > 0 there exist

x, y ∈ (0, 1) with |x − y| < δ, but |sin 1
x − sin 1

y | ≥ ε. Take ε =
√

2/8. Given
δ > 0, take k ∈ N so that

1
πk

− 1
πk + π/4

=
1

πk(4k + 1)
< δ.

Set x = 1
πk , y = 1

πk+π/4 . They are in (0, 1) and |x − y| < δ. However,
|sin 1

x − sin 1
y | = |cos 1

c |
1
c2 |x − y| by the Mean Value Theorem (MVT) for some

c between x and y. Since πk < 1/c < πk + π/4, we have |cos 1
c | >

√
2/2 and

1/c2 > π2k2, whence |sin 1
x−sin 1

y | = |cos 1
c ||x−y|/c2 >

√
2

2
π2k2

πk(4k+1) =
√

2πk
2(4k+1) >

√
22k

16k =
√

2
8 = ε.

This problem is a little tough for an exam. A problem “Give an example
of a continuous function on (0, 1) that is not uniformly continuous” would be
more appropriate. A function like that would be f(x) = 1/x. The explanation
why it is not uniformly continuous would be similar, but simpler.

Problem 2. If that equation had a solution, it would mean that for some
x ∈ (0, π/2) the 6th-degree Taylor polynomial remainder sin(7) c

7! x7 = 0 for some
c strictly between 0 and x and therefore between 0 and π/2. But sin(7) c =
− cos c < 0 and x > 0 for x and c between 0 and π/2, thus the remainder is
always strictly negative.

It was too quick for me to agree that a solution by taking 7 derivatives
of both sides of the original equation, suggested by one of the students, was
correct. In fact, if we assume the equality of the values of the two functions at
some point x, it will not be necessarily true that the derivatives will be equal
even at that point. Thus, only the solution that I presented to you in class was
correct.

Problem 3. (1) This is implicit differentiation. Assuming x is a function of
y and z, differentiate the given equation with respect to z. We get

2x∂x
∂z + z

√
2x2 + z2 − 2

= − sin(yx2)2yx
∂x

∂z
.

We need to evaluate this at y = 0, z = 1, and x = −1. We get

−2
∂x

∂z
+ 1 = 0
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and ∂x
∂z = 1

2 .
(2) Differentiating the first given equation in y, we get

2xdx
dy + z dz

dy√
2x2 + z2 − 2

= − sin(yx2)(2yx
dx

dy
+ x2).

Evaluating this at y = 0, z = 1, and x = −1, we obtain

−2
dx

dy
+

dz

dy
= 0.

Thus
dz

dy
= 2

dx

dy
. (1)

Now let us deal similarly with the second given equation.

2
dx

dy
+ 1 + 2z

dz

dy
= cos y − dz

dy
.

After evaluation, get

2
dx

dy
+ 3

dz

dy
= 0.

Substituting (1) into that, we see that

dx

dy
=

dz

dy
= 0

at y = 0.
Problem 4. Using Lagrange’s method, we look at the points where

∇(x + y + z) = λ∇(a/x + b/y + c/z − 1),

or componentwise

1 = −aλ/x2,

1 = −bλ/y2,

1 = −cλ/z2,

subject to the constraint a/x + b/y + c/z = 1. Solve the first equation for λ,
substitute into the other two equations and solve them for y and z, remembering
that x, y, z > 0 by the assumptions of the problem:

λ = −x2/a, (2)

y =
√

b/ax, (3)

z =
√

c/ax. (4)
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Substitute the y and z into the constraint to get

x = a +
√

ab +
√

ac.

This is the only critical point, delivering a minimal value of x + y + z, because
it goes to ∞ as |(x, y, z)| → ∞ on {a/x + b/y + c/z = 1} by Theorem 2.83a. At
that point the minimum value will be attained. That value is equal to

x + y + z

= (a +
√

ab +
√

ac) + (
√

ab + b +
√

bc) + (
√

ac +
√

bc + c)

= a + b + c + 2
√

ab + 2
√

ac + 2
√

bc.
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