Math 4606. Fall 2006.
 Solutions to Exam 1

1. (20 points) Let X and Y be two non-empty sets and let f be a one-to-one function from X to Y. Let A be a subset of X. Show that $f(X \backslash A)$ is a subset of $Y \backslash f(A)$.
Solution. Let $y \in f(X \backslash A)$, then $y=f(x)$ for some $x \in X \backslash A$. Suppose $y \in f(A)$. Then there is $x^{\prime} \in A: y=f\left(x^{\prime}\right)$. Since A and $X \backslash A$ are disjoint, $x \neq x^{\prime}$. Therefore $y=f(x)=f\left(x^{\prime}\right)$ with $x \neq x^{\prime}$ which contradicts f being one-to-one. Thus $y \notin f(A)$, which means $y \in Y \backslash f(A)$. Hence $f(X \backslash A) \subset Y \backslash f(A)$.
2. (20 points) Let f be a function from \mathbb{R}^{2} to \mathbb{R} given by

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+5 y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Does the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? Why? Find the limit if it does.
Solution. Let us look at $\lim _{x \rightarrow 0} f(x, 0)$ and $\lim _{x \rightarrow 0} f(x, x)$. The first limit exists and is equal to 0 , because $f(x, 0)=0$ for all x. The second limit may be computed by computing the function $f(x, x)$ for $x \neq 0$ as follows:

$$
f(x, x)=\frac{2 x^{2}}{x^{2}+5 x^{4}}=\frac{2}{1+5 x^{2}}
$$

Hence $\lim _{x \rightarrow 0} f(x, x)=2$. Thus, we obtain two different limits as (x, y) aproaches $(0,0)$ along two different lines, which implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
3. (20 points) Let f, g and h be three real-valued functions on \mathbb{R}^{n} satisfying

$$
g(x) \leq f(x) \leq h(x) \text { for all } x \in \mathbb{R}^{n}
$$

Let $a \in \mathbb{R}^{n}$ and $L \in \mathbb{R}$ and suppose that

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L
$$

Prove that $\lim _{x \rightarrow a} f(x)=L$.
Solution. Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} g(x)=L$, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
-\varepsilon<g(x)-L<\varepsilon \text { whenever } 0<|x-a|<\delta_{1} \text {. } \tag{1}
\end{equation*}
$$

Similarly, there is $\delta_{2}>0$ such that

$$
\begin{equation*}
-\varepsilon<h(x)-L<\varepsilon \text { whenever } 0<|x-a|<\delta_{2} . \tag{2}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Let x be in \mathbb{R}^{n} such that $0<|x-a|<\delta$. We have $0<|x-a|<\delta_{1}$ and hence by (1):

$$
f(x)-L \geq g(x)-L>-\varepsilon
$$

We have $0<|x-a|<\delta_{2}$ and hence by (2):

$$
f(x)-L \leq h(x)-L<\varepsilon .
$$

Thefore $|f(x)-L|<\varepsilon$. Thus $\lim _{x \rightarrow a} f(x)=L$.
4. (20 points) Show that the set

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: x y>5 \text { and } y+x^{2}+3 x<13\right\}
$$

is an open set in \mathbb{R}^{2}.
Solution. We write $S=A \cap B$ where

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: x y>5\right\}, \quad B=\left\{(x, y) \in \mathbb{R}^{2}: y+x^{2}+3 x<13\right\}
$$

Let $f_{1}(x, y)=x y$ and $f_{2}(x, y)=y+x^{2}+3 x$. We know that f_{1} and f_{2} are continuous on \mathbb{R}^{2}. Since $A=f_{1}^{-1}((5, \infty))$ and $(5, \infty)$ is open, we obtain A is open. Similarly, $B=f_{2}^{-1}((-\infty, 13))$ is open. Therefore S is open, for being an intersection of two open sets.
5. (20 points) Find the limit

$$
\lim _{k \rightarrow \infty} \frac{-3 k^{3}+8 k^{2}-7 k+11}{4 k^{3}-k^{2}+5} .
$$

Solution. Divide the denominator and numerator by k^{3}, we have

$$
\frac{-3 k^{3}+8 k^{2}-7 k+11}{4 k^{3}-k^{2}+5}=\frac{a_{k}}{b_{k}}
$$

where

$$
a_{k}=-3+\frac{8}{k}-\frac{7}{k^{2}}+\frac{11}{k^{3}}, \quad b_{k}=4-\frac{1}{k}+\frac{5}{k^{3}} .
$$

We have $\lim _{k \rightarrow \infty} a_{k}=-3$ and $\lim _{k \rightarrow \infty} b_{k}=4 \neq 0$, hence

$$
\lim _{k \rightarrow \infty} \frac{-3 k^{3}+8 k^{2}-7 k+11}{4 k^{3}-k^{2}+5}=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=-\frac{3}{4} .
$$

