Math 4606. Fall 2006.

Solutions to Exam 2

1. (25 points) Let A and B be two compact subsets of \mathbb{R}^{n}. Define the distance between A and B by

$$
d(A, B)=\inf \{|x-y|: x \in A, y \in B\}
$$

Show that if $A \cap B=\emptyset$ then $d(A, B)>0$.
Solution. Note that $d(A, B) \geq 0$. Suppose $d(A, B)=0$. By the property of the infimum, there are sequences $\left\{x_{k}\right\}$ in A and $\left\{y_{k}\right\}$ in B such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|x_{k}-y_{k}\right|=0 \tag{1}
\end{equation*}
$$

Since A and B are compact, there are subsequences $\left\{x_{k_{j}}\right\}$ and $\left\{y_{k_{j}}\right\}$ and $a \in A$ and $b \in B$, such that $\lim _{j \rightarrow \infty} x_{k_{j}}=a$ and $\lim _{j \rightarrow \infty} y_{k_{j}}=b$. By (1), $|a-b|=\lim _{j \rightarrow \infty}\left|x_{k_{j}}-y_{k_{j}}\right|=0$. Hence $a=b \in A \cap B$ which contradicts the fact that $A \cap B=\emptyset$. Therefore we have $d(A, B)>0$.
2. (25 points) Show that $f(x)=2 \sqrt{x}-3 \cos x+\ln \left(x^{2}+1\right)$ is uniformly continuous on $(1, \infty)$.
Solution. For $x \in(1, \infty)$, we have

$$
f^{\prime}(x)=\frac{1}{\sqrt{x}}+3 \sin x+\frac{2 x}{x^{2}+1}
$$

Noting that $|2 x| \leq x^{2}+1$ and $\sqrt{x} \geq 1$, we have

$$
\left|f^{\prime}(x)\right| \leq 1+3+1=5, \text { for all } x \in(1, \infty)
$$

Let $x, y \in(1, \infty)$, assume $x<y$, then by the mean value theorem, there is $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)$. Therefore

$$
|f(y)-f(x)| \leq 5|y-x|, \quad \text { for all } x, y \in(1, \infty)
$$

Let $\varepsilon>0$, take $\delta=\varepsilon / 5$, for $x, y \in(1, \infty)$ and $|x-y|<\delta$, we have

$$
|f(y)-f(x)| \leq 5|x-y|<5 \delta=\varepsilon
$$

Thus f is uniformly continuous on $(1, \infty)$.
3. (25 points) Let S be a connected set in \mathbb{R}^{3} containing two points $(1,2,0)$ and ($-1,3,6$). Show that S contains at least one point on the plane defined by the equation $3 x-y+2 z-5=0$.
Solution. Let $f(x, y, z)=3 x-y+2 z-5$. Then f is continuous on S and $f(1,2,0)=1-2-5=-6<0$ and $f(-1,3,6)=-3-3+12-5=1>0$. Since S is connected, $(1,2,0)$ and $(-1,3,6)$ are in S, and the number 0 is between $f(1,2,0)$ and $f(-1,3,6)$, then by the intermediate value theorem, there is $\left(x_{0}, y_{0}, z_{0}\right) \in S$ such that $f\left(x_{0}, y_{0}, z_{0}\right)=0$. Therefore $\left(x_{0}, y_{0}, z_{0}\right)$ belongs to S and the plane given by $3 x-y+2 z-5=0$.
4. (25 points) Find the limit

$$
\lim _{x \rightarrow 0} \frac{x^{2}+2 \cos x-2}{x^{4}}
$$

Solution. Since $\lim _{x \rightarrow 0}\left(x^{2}+2 \cos x-2\right)=0=\lim _{x \rightarrow 0} x^{4}$, we can use L'Hôspital's rule (the last limit will verify the use of this rule). Applying the rule a few times, we obtain

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+2 \cos x-2}{x^{4}} & =\lim _{x \rightarrow 0} \frac{2 x-2 \sin x}{4 x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{2-2 \cos x}{12 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin x}{24 x} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos x}{24} \\
& =\frac{1}{12}
\end{aligned}
$$

