
Math 4606. Spring 2007

Solutions to Sample Final Exam 1

Problem 1. Answer: some. If A = [0, 2], B = [1, 3], then supA ∩ B = 2 =
min(supA, supB).

On the other hand, if A = {0, 1} and B = {0, 2}, then supA ∩B = 0 6= 1 =
min(supA, supB).

Problem 2. Without loss of generality, assume |b| ≥ |a|. Then we need to
show that

√
a2 + b2 ≤

√
2|b|. Indeed, |b| ≥ |a| is equivalent to b2 ≥ a2, which

implies
√

a2 + b2 ≤
√

2b2 =
√

2|b|.
Problem 3. This sequence is obtained by alternating the following three

sequences

0.3, 0.3123, 0.3123123, . . . ,

0.23, 0.23123, 0.23123123, . . . ,

0.123, 0.123123, 0.123123123, . . .

Each of these sequences converges. The limits are the periodic infinite decimal
fractions 0.3123123 . . . , 0.23123123 . . . , and 0.123123123 . . . , respectively.

Any convergent subsequence of the original sequence must have a infinite
tail consisting of the terms of only one of the three sequences; otherwise, the
subsequence will be divergent. Thus, the sublimits (which we also know as
accumulation points) will be the three periodic infinite decimal fractions above.

Problem 4. Let sn = (−1)n/n and tn = 1/n. Both sequences converge to 0,
while the quotient sn/tn = (−1)n diverges.

Problem 5. Given ε > 0, take δ = ε. Then whenever |x − 1| < δ, we have

|f(x)− f(1)| = |f(x)− 1| =

0, for x rational,

|x− 1|, for x irrational
≤ |x− 1| < δ = ε. This

means f(x) is continuous at x = 1.
Problem 6. [After Mariam Kaynia] Take δ = 1/4. Let us show it works.

Suppose |x − y| < 1/4. If x = y, then |
√

x − √
y| = 0 < 1/2, so that we can

safely assume x 6= y. Then |
√

x−√y| = |x−y|/(
√

x+
√

y) ≤ |x−y|/|
√

x−√y|,
implying |

√
x − √

y|2 ≤ |x − y| by simple algebra. Taking the square root, we
see |

√
x−√y| ≤

√
|x− y| <

√
1/4 = 1/2.

Problem 7. False. Take f(x) = −1 and g(x) = 1. Then take your favorite
function h(x) enclosed between −1 and 1 which does not have a derivative at,
say, x = 0. Or take h(x) = sin x. Its derivative at x = 0 is 1, which is not equal
to f ′(0) = 0.
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Problem 8. For h > 0

f(a + h)− f(a)
h

≤ 0,

therefore, since the left-hand side has limit f ′(a) as h → 0+, this limit must
also be ≤ 0.

Problem X. For f(x) = u(x)+iv(x), where u and v are the real and imaginary
parts of f , respectively, the MVT would be equivalent to the following two
equations satisfied simultaneously for some c between a and b:

u(b)− u(a) = u′(c)(b− a),

v(b)− v(a) = v′(c)(b− a).

Take two real-valued functions u(x) and v(x), which have the c at two different
points, for example, u(x) = x2 and v(x) = (x − 1)(x + 1)(x − 1/2) on [−1, 1].
Then for f(x) = u(x) + iv(x), we have f(1) − f(−1) = 0. If it happened that
for some c ∈ [−1, 1], we had 0 = f ′(c)(1 − (−1)), then f ′(c) = 0, which would
mean u′(c) = 0 and v′(c) = 0 simultaneously. However, u′(c) = 2c = 0 implies
c = 0, and at v′(0) 6= 0 from a simple evaluation of the derivative.
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