## Math 4606. Spring 2007

## Solutions to Sample Final Exam 1

Problem 1. Answer: some. If $A=[0,2], B=[1,3]$, then $\sup A \cap B=2=$ $\min (\sup A, \sup B)$.

On the other hand, if $A=\{0,1\}$ and $B=\{0,2\}$, then $\sup A \cap B=0 \neq 1=$ $\min (\sup A, \sup B)$.

Problem 2. Without loss of generality, assume $|b| \geq|a|$. Then we need to show that $\sqrt{a^{2}+b^{2}} \leq \sqrt{2}|b|$. Indeed, $|b| \geq|a|$ is equivalent to $b^{2} \geq a^{2}$, which implies $\sqrt{a^{2}+b^{2}} \leq \sqrt{2 b^{2}}=\sqrt{2}|b|$.

Problem 3. This sequence is obtained by alternating the following three sequences

$$
\begin{gathered}
0.3,0.3123,0.3123123, \ldots \\
0.23,0.23123,0.23123123, \ldots \\
0.123,0.123123,0.123123123, \ldots
\end{gathered}
$$

Each of these sequences converges. The limits are the periodic infinite decimal fractions $0.3123123 \ldots, 0.23123123 \ldots$, and $0.123123123 \ldots$, respectively.

Any convergent subsequence of the original sequence must have a infinite tail consisting of the terms of only one of the three sequences; otherwise, the subsequence will be divergent. Thus, the sublimits (which we also know as accumulation points) will be the three periodic infinite decimal fractions above.

Problem 4. Let $s_{n}=(-1)^{n} / n$ and $t_{n}=1 / n$. Both sequences converge to 0 , while the quotient $s_{n} / t_{n}=(-1)^{n}$ diverges.

Problem 5. Given $\varepsilon>0$, take $\delta=\varepsilon$. Then whenever $|x-1|<\delta$, we have $|f(x)-f(1)|=|f(x)-1|=\left\{\begin{array}{ll}0, & \text { for } x \text { rational, } \\ |x-1|, & \text { for } x \text { irrational }\end{array} \leq|x-1|<\delta=\varepsilon\right.$. This means $f(x)$ is continuous at $x=1$.

Problem 6. [After Mariam Kaynia] Take $\delta=1 / 4$. Let us show it works. Suppose $|x-y|<1 / 4$. If $x=y$, then $|\sqrt{x}-\sqrt{y}|=0<1 / 2$, so that we can safely assume $x \neq y$. Then $|\sqrt{x}-\sqrt{y}|=|x-y| /(\sqrt{x}+\sqrt{y}) \leq|x-y| /|\sqrt{x}-\sqrt{y}|$, implying $|\sqrt{x}-\sqrt{y}|^{2} \leq|x-y|$ by simple algebra. Taking the square root, we see $|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|}<\sqrt{1 / 4}=1 / 2$.

Problem 7. False. Take $f(x)=-1$ and $g(x)=1$. Then take your favorite function $h(x)$ enclosed between -1 and 1 which does not have a derivative at, say, $x=0$. Or take $h(x)=\sin x$. Its derivative at $x=0$ is 1 , which is not equal to $f^{\prime}(0)=0$.

Problem 8. For $h>0$

$$
\frac{f(a+h)-f(a)}{h} \leq 0
$$

therefore, since the left-hand side has limit $f^{\prime}(a)$ as $h \rightarrow 0+$, this limit must also be $\leq 0$.

Problem $X$. For $f(x)=u(x)+i v(x)$, where $u$ and $v$ are the real and imaginary parts of $f$, respectively, the MVT would be equivalent to the following two equations satisfied simultaneously for some $c$ between $a$ and $b$ :

$$
\begin{aligned}
u(b)-u(a) & =u^{\prime}(c)(b-a) \\
v(b)-v(a) & =v^{\prime}(c)(b-a)
\end{aligned}
$$

Take two real-valued functions $u(x)$ and $v(x)$, which have the $c$ at two different points, for example, $u(x)=x^{2}$ and $v(x)=(x-1)(x+1)(x-1 / 2)$ on $[-1,1]$. Then for $f(x)=u(x)+i v(x)$, we have $f(1)-f(-1)=0$. If it happened that for some $c \in[-1,1]$, we had $0=f^{\prime}(c)(1-(-1))$, then $f^{\prime}(c)=0$, which would mean $u^{\prime}(c)=0$ and $v^{\prime}(c)=0$ simultaneously. However, $u^{\prime}(c)=2 c=0$ implies $c=0$, and at $v^{\prime}(0) \neq 0$ from a simple evaluation of the derivative.

