## Math 4606. Spring 2007

## Solutions to Sample Final 2, Part II

Problem C. If $p(x)$ is a polynomial of even degree with the leading coefficient $a_{2 n}>0$, then $\lim _{|x| \rightarrow \infty} p(x)=\infty$. After that the argument is identical to the proof of Theorem 2.83a in the textbook.

Problem D. We will use sequential continuity, Theorem 1.15. If $p \neq 0$ or 1 , then there will always be a sequence $\left\{a_{n}\right\}$ of rationals converging to p , for which the sequence $\left\{f\left(a_{n}\right)\right\}$ will converge to $1-p$, and a sequence $\left\{b_{n}\right\}$ of irrationals converging to p , for which the sequence $\left\{f\left(b_{n}\right)\right\}$ will converge to $1-p^{2}$. Since for $p \neq 0$ or 1 , we have $1-p \neq 1-p^{2}$, this implies that $f(x)$ will be discontinuous at such $p$.

If $p=0$ or 1 , then the values of $f(x)$ at both rationals and irrationals near $p$ will be given by the two continuous functions, which both happen to converge to $f(p)$. Thus, if we have any sequence $\left\{c_{n}\right\}$ converging to $p$, then the sequence $\left\{f\left(c_{n}\right)\right\}$ will be made of two sequences, the rational subsequence and the irrational one, each of which converges to $f(p)$. Therefore, the sequence $\left\{f\left(c_{n}\right)\right\}$ will converge to $f(p)$.

Problem F. (i) Given $\varepsilon>0$, take $\delta=\varepsilon / 2 M$. Then for each $x, y$, such that $|x-y|<\delta$, we have $|f(x)-f(y)|=\left|f^{\prime}(c)(x-y)\right| \leq M \delta=\varepsilon / 2<\varepsilon$.
(ii) Take $\varepsilon=1$. Then for any $\delta>0$, take a natural number $n$ such that $n(2 n+1)>1 / \delta$, so that $x=1 / n$ and $y=1 /(n+1 / 2)$ will be less than $\delta$ apart. Then $|\sin \pi / x-\sin \pi / y|=|0-\sin \pi(n+1 / 2)|=1 \geq \varepsilon$. This implies the function is not uniformly continuous.

