Solutions for practice problems for the Final, part 3

Note: Practice problems for the Final Exam, part 1 and part 2 are the same as Practice problems for Midterm 1 and Midterm 2.

1. Calculate Fourier Series for the function $f(x)$, defined on $[-2,2]$, where

$$
f(x)= \begin{cases}-1, & -2 \leq x \leq 0 \\ 2, & 0<x \leq 2\end{cases}
$$

We have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n x}{2}+b_{n} \sin \frac{\pi n x}{2}\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{2}\left(\int_{-2}^{0}(-1) d x+\int_{0}^{2} 2 d x\right)=1 \\
a_{n}=\frac{1}{2}\left(\int_{-2}^{0}(-1) \cos \frac{\pi n x}{2} d x+\int_{0}^{2} 2 \cos \frac{\pi n x}{2} d x\right)= \\
\frac{1}{2}\left((-1)\left[\frac{2}{\pi n} \sin \frac{\pi n x}{2}\right]_{-2}^{0}+2\left[\frac{2}{\pi n} \sin \frac{\pi n x}{2}\right]_{0}^{2}\right)=0, \quad n>0,
\end{gathered}
$$

and

$$
\begin{gathered}
b_{n}=\frac{1}{2}\left(\int_{-2}^{0}(-1) \sin \frac{\pi n x}{2} d x+\int_{0}^{2} 2 \sin \frac{\pi n x}{2} d x\right)= \\
\frac{1}{2}\left(-(-1)\left[\frac{2}{\pi n} \cos \frac{\pi n x}{2}\right]_{-2}^{0}-2\left[\frac{2}{\pi n} \cos \frac{\pi n x}{2}\right]_{0}^{2}\right)= \\
\frac{1}{\pi n}(1-\cos \pi n)-2 \frac{1}{\pi n}(\cos \pi n-1)=\frac{3}{\pi n}\left(1-(-1)^{n}\right) .
\end{gathered}
$$

Therefore, we have

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{3}{\pi n}\left(1-(-1)^{n}\right) \sin \frac{\pi n x}{2} .
$$

An easy way to see that all of a_{n} except a_{0} are zero is to note that

$$
f(x)=\frac{1}{2}+g(x)
$$

where $g(x)$ is an odd function,

$$
g(x)= \begin{cases}3 / 2, & x>0 \\ -3 / 2, & x<0\end{cases}
$$

2. Calculate Fourier Series for the function $f(x)$, defined on $[-5,5]$, where

$$
f(x)=3 H(x-2) .
$$

By a similar method,
$f(x)=\frac{9}{5}+\sum_{n=1}^{\infty}\left[\frac{-3}{\pi n} \sin \frac{2 \pi n}{5} \cos \frac{\pi n x}{5}+\frac{3}{\pi n}\left(\cos \frac{2 \pi n}{5}-(-1)^{n}\right) \sin \frac{\pi n x}{5}\right]$.
3. Calculate Fourier Series for the function, $f(x)$, defined as follows:
(a) $x \in[-4,4]$, and

$$
f(x)=5 .
$$

Comparing $f(x)$ with the general Fourier Series expression with $L=4$,

$$
g(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n x}{4}+b_{n} \sin \frac{\pi n x}{4}\right),
$$

we can see that $a_{0}=10, a_{n}=b_{n}=0$ for $n>0$ will give $f(x)=g(x)$. (b) $x \in[-\pi, \pi]$, and

$$
f(x)=21+2 \sin 5 x+8 \cos 2 x .
$$

Again, for $L=\pi$, we have

$$
g(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right),
$$

and setting $a_{0}=42, a_{2}=8, b_{5}=2$ and the rest of the coefficients zero, we obtain $f(x)=g(x)$.
(c) $x \in[-\pi, \pi]$, and

$$
f(x)=\sum_{n=1}^{8} c_{n} \sin n x, \quad \text { with } c_{n}=1 / n
$$

Similarly, we set $b_{n}=1 / n$ for $1 \leq n \leq 8$, and the rest of the coefficients zero.
(d) $x \in[-3,3]$, and

$$
f(x)=-4+\sum_{n=1}^{6} c_{n}(\sin (\pi n x / 3)+7 \cos (\pi n x / 3)), \quad \text { with } c_{n}=(-1)^{n}
$$

We have

$$
g(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n x}{3}+b_{n} \sin \frac{\pi n x}{3}\right)
$$

so we set $a_{0}=-8, a_{n}=7(-1)^{n}$ for $1 \leq n \leq 6$ and $b_{n}=(-1)^{n}$ for $1 \leq n \leq 6$, and the rest of the coefficients zero.
4. (a) Let $f(x)=x+x^{3}$ for $x \in[0, \pi]$. What coefficients of the Fourier Series of f are zero? Which ones are non-zero? Why?
$f(x)$ is an odd function. Indeed,

$$
f(-x)=-x+(-x)^{3}=-x-x^{3}=-\left(x+x^{3}\right)=-f(x)
$$

therefore $a_{n}=0$, and b_{n} can be nonzero.
(b) Let $g(x)=\cos \left(x^{5}\right)+\sin \left(x^{2}\right)$. What coefficients of the Fourier Series of g are zero? Which ones are non-zero? Why?
$g(x)$ is an even function. Indeed,
$g(-x)=\cos \left((-x)^{5}\right)+\sin \left((-x)^{2}\right)=\cos \left(-x^{5}\right)+\sin \left(x^{2}\right)=\cos \left(x^{5}\right)+\sin \left(x^{2}\right)=g(x)$.
Therefore, $b_{n}=0$, and a_{n} can be nonzero.
5. Let $f(x)=2 x+x^{4}$ for $x \in[0,5]$.
(a) Write down the function $G(x)$, which is the odd continuation for $f(x)$. Specify what terms will be zero and non-zero in the Fourier expansion for $G(x)$.
We have

$$
G(x)= \begin{cases}2 x+x^{4}, & x>0 \\ 2 x-x^{4}, & x<0\end{cases}
$$

Indeed, we can check that if $\alpha>0$, then $G(-\alpha)=-2 \alpha-(-\alpha)^{4}=$ $-2 \alpha-\alpha^{4}=-G(\alpha)$. In the Fourier expansion for $G, a_{n}=0$, and b_{n} can be nonzero.
(b) Write down the function $V(x)$, which is the even continuation for $f(x)$. Specify what terms will be zero and non-zero in the Fourier expansion for $V(x)$.

We have

$$
V(x)= \begin{cases}2 x+x^{4}, & x>0 \\ -2 x+x^{4}, & x<0\end{cases}
$$

Indeed, we can check that if $\alpha>0$, then $V(-\alpha)=-2(-\alpha)+(-\alpha)^{4}=$ $2 \alpha+\alpha^{4}=V(\alpha)$. In the Fourier expansion for $V, b_{n}=0$, and a_{n} can be nonzero.
6. Suppose $f(x)$ is defined for $x \in[0,7]$, and $f(x)=2 e^{-4 x}$. Another function, $F(x)$, is given by the following:

$$
F(x)=\sum_{n=0}^{\infty} a_{n} \cos (\pi n x / 7)
$$

where

$$
a_{n}=\frac{2}{7} \int_{0}^{7} 2 e^{-4 x} \cos \left(\frac{\pi n x}{7}\right) d x .
$$

What is the value of $F(3)$? What is the value of $F(-2)$?
The function $F(x)$ is the cosine Fourier expansion of f. On the domain of f, that is, for $x \in[0,7]$, we have $F(x)=f(x)$. Therefore, since $3 \in[0,7]$, then $F(3)=f(3)=2 e^{-12}$.
For the negative values of x, the cosine series converges to the even extension of $f(x)$, which is $2 e^{-4|x|}$. Therefore, $F(-2)=f(2)=2 e^{-8}$.
Note: a sine Fourier series would give the odd extension, and in this case we would have $-f(2)=-2 e^{-8}$.
7. Let us supposed that both ends of a string of length 25 cm are attached to fixed points at hight 0 . Initially, the string is at rest, and has the shape $4 \sin (2 \pi x / 25)$, where x is the horizontal coordinate along the string, with zero at the left end. The speed of wave propagation along
the string is $3 \mathrm{~cm} / \mathrm{sec}$. Write down the complete initial and boundary value problem for the shape of the string.
We have the following initial and boundary value problem:

$$
\begin{align*}
& \frac{\partial^{2} y}{\partial t^{2}}=9 \frac{\partial^{2} y}{\partial x^{2}}, \quad x \in[0,25] \tag{1}\\
& y(0, t)=y(25, t)=0 \tag{2}\\
& y(x, 0)=4 \sin (2 \pi x / 25) \tag{3}\\
& \frac{\partial y(x, 0)}{\partial t}=0 \tag{4}
\end{align*}
$$

8. Let us suppose that the following boundary value problem is given:

$$
\begin{align*}
& \frac{\partial^{2} y}{\partial t^{2}}=50 \frac{\partial^{2} y}{\partial x^{2}}, \quad x \in[0,100] \tag{5}\\
& y(0, t)=y(100, t)=0 \tag{6}\\
& y(x, 0)=x^{2}(100-x), \tag{7}\\
& \frac{\partial y(x, 0)}{\partial t}= \begin{cases}x, & 0 \leq x \leq 25 \\
1 / 3(100-x), & 25 \leq x \leq 100\end{cases} \tag{8}
\end{align*}
$$

What is the speed of wave propagation along the string? What is the initial displacement of the string at point $x=20$? What is the initial velocity of the string at point $x=50$? At what point of the string is the initial velocity the largest?
The speed of wave propagation along the string is $\sqrt{50}$. The initial displacement of the string at point $x=20$ is $20^{2}(100-20)=32000$. The initial velocity of the string at point $x=50$ is $1 / 3(100-50)=50 / 3$. The maximum of the initial velocity is at point $x=25$ (plot the graph of the initial velocity, equation (8), to see this).
9. Let us suppose that the following boundary value problem is given:

$$
\begin{align*}
& \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}, \quad x \in[0,2] \tag{9}\\
& y(0, t)=y(\pi, t)=0, \tag{10}\\
& y(x, 0)=0 \tag{11}\\
& \frac{\partial y(x, 0)}{\partial t}=g(x) . \tag{12}
\end{align*}
$$

Suppose that

$$
\int_{0}^{2} g(x) \sin \left(\frac{\pi n x}{2}\right) d x=\frac{1}{n^{3}}
$$

Find $y(x, t)$.
For the problem with the zero initial displacement, the solution is given in terms of the initial velocity (here $c=1$),

$$
y(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{2} \sin \frac{n \pi t}{2}
$$

with

$$
c_{n}=\frac{2}{n \pi} \int_{0}^{2} g(x) \sin \left(\frac{\pi n x}{2}\right) d x=\frac{2}{n^{4} \pi} .
$$

10. Let us suppose that the following boundary value problem is given:

$$
\begin{align*}
& \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}, \quad x \in[0, \pi], \tag{13}\\
& y(0, t)=y(\pi, t)=0, \tag{14}\\
& y(x, 0)=22 \sin 2 x+8 \sin 6 x, \tag{15}\\
& \frac{\partial y(x, 0)}{\partial t}=0 . \tag{16}
\end{align*}
$$

Find $y(x, t)$, in a closed form (containing no integrals). You will not need to evaluate any integrals.
We look for the solution is the form,

$$
y(x, t)=\sum_{n=1}^{\infty} c_{n} \sin n x \cos n t
$$

To satisfy initial condition (15), we set $t=0$ and obtain,

$$
y(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin n x .
$$

To make this equal to $f(x)=22 \sin 2 x+8 \sin 6 x$, we set $c_{2}=22, c_{6}=8$, and the rest of them zero. We obtain,

$$
y(x, t)=22 \sin 2 x \cos 2 t+8 \sin 6 x \cos 6 t .
$$

