MATH 5335: GÉOMÉTRIE UNE
 COMPUTING POINCARÉ LENGTH: HINTS TO PROBLEMS
 9.9.23-26

INSTRUCTOR: ALEX VORONOV

Here are some examples of computing Poincaré length, which you can view as hints to homework Problems 9.9.23-26.
Example 1. Find the length of the Euclidean segment between $(1,2)$ and $(4,6)$.
Solution. That length is the same as the Euclidean distance $\|(4,6)-(1,2)\|=$ $\|(3,4)\|=\sqrt{9+16}=5$.

Example 2. Find the length of the Poincaré segment between $(-1,2)$ and $(-1,1 / 3)$.
Solution. That length is the same as the Poincaré distance along a vertical line:

$$
\left|\int_{2}^{1 / 3} d y / y\right|=|\ln (1 / 3)-\ln 2|=|-\ln 3-\ln 2|=\ln 6
$$

Example 3. Find the length of the Poincaré segment between $(0,5)$ and $(-5 / 2,5 \sqrt{3} / 2)$.
Solution. That length is the same as the Poincaré distance along a Poincaré line which is a Euclidean circle. First, let us find a an equation of the circle. It must be of the form $(x-\omega)^{2}+y^{2}=\rho^{2}$. The conditions are that our given points must satisfy this equation:

$$
\begin{cases}\omega^{2}+5^{2} & =\rho^{2} \\ (5 / 2+\omega)^{2}+5^{2} \cdot 3 / 2^{2} & =\rho^{2}\end{cases}
$$

Solve this system by subtracting the first equation from the second:

$$
5 \omega+25 / 4-25 / 4=0
$$

whence $\omega=0$ and $\rho=5$. Now, find a parametric equation of the corresponding arc:

$$
(0,0)+\rho(\cos t, \sin t), \quad \pi / 2 \leq t \leq \arccos (-1 / 2)=2 \pi / 3
$$

Now use the Poincaré length formula (Definition 9.4.7):

$$
\begin{aligned}
\left|\int_{\pi / 2}^{2 \pi / 3} 5 d t / y\right| & =\left|\int_{\pi / 2}^{2 \pi / 3} 5 d t / 5 \sin t\right| \\
& =|\ln ((\csc 2 \pi / 3-\cot 2 \pi / 3) /(\csc \pi / 2-\cot \pi / 2))| \\
& =|\ln ((2 / \sqrt{3}+1 / \sqrt{3}) /(1-0))|=\frac{1}{2} \ln 3
\end{aligned}
$$

Date: November 29, 2011.

The evaluation of the integral of $\csc t=1 / \sin t$ can be found in your favorite Calculus text. The answer $\ln \left(\left(\csc t_{2}-\cot t_{2}\right) /\left(\csc t_{1}-\cot t_{1}\right)\right)$ is given in Proposition 9.4.8. However, you do not need to know how to compute that integral or memorize the answer for this class: I will provide the answer on the coming exam, if needed.

