MATH 5335: GEOMETRY I
 SAMPLE MIDTERM TEST I

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test. For this sample test, pretend you are in a test situation and time yourself for 100 minutes, which is how long the actual test will be.

Good luck!
Problem 1. Find the point of intersection of the lines

$$
\{t(5,4): t \in \mathbf{R}\} \quad \text { and } \quad\{X:\langle(3,-1), X\rangle=-4\} .
$$

Express the coordinates of your answer as fractions.
Problem 2. Decide if the line segment with endpoints $(17,12)$ and $(11,9)$ meets the line $\{t(7,5): t \in \mathbf{R}\}$ and, if so where.
Problem 3. Let l denote the line with normal form

$$
\langle(-3,4), X\rangle=-3
$$

Let k denote the line through $(5,4)$ perpendicular to l. Find a point on k different from $(5,4)$ whose distance from l is the same as the distance of $(5,4)$ from l.

Problem 4. Let p and r be rays emanating from the origin with direction indicators $U=(1,0)$ and $W=(-8,15)$. Find a unit direction indicator V for the ray q which bisects $\angle(p, r)$.
Problem 5. Construct the matrix formula for an isometry which sends $\angle(5,2)(2,2)(4,4)$ to $\angle(-1,4)(-1,1)(-3,3)$.

Answer:

$$
\begin{aligned}
{[\mathcal{U}(X)] } & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left([X]-\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right)+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Problem 6. When developing the theory of isometries, we proved that for any isometry \mathcal{U}, any points P and Q, and any real numbers a and b for which $a+b=1$, the following relation holds:

$$
\mathcal{U}(a P+b Q)=a \mathcal{U}(P)+b \mathcal{U}(Q)
$$

Prove that, as a consequence of this relation that, for any isometry, the image of any line is a line. [If you use a fact from Chapter 1, state it; you are NOT asked to prove that fact or give a reference for it.]

[^0]Problem 7. Construct the matrix formula for the reflection across the line

$$
l=\{(4,2)+t(3,5): t \in \mathbb{R}\}
$$

Problem 8. You are being told that the following matrix formula represents a glide reflection, that is to say, a composition (in either order) of the reflection in a certain line l and the translation by a certain vector P parallel to that line:

$$
[X] \rightsquigarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Find both the vector P and the mirror l.
Answer: $P=(1 / 2,1 / 2)$ and $l=\{(1 / 4,-1 / 4)+t(1,1): t \in \mathbb{R}\}$.

[^0]: Date: October 5, 2011.

