MATH 5335: GEOMETRY I SAMPLE MIDTERM TEST II

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test. For this sample test, pretend you are in a test situation and time yourself for 100 minutes, which is how long the actual test will be.

Good luck!

Problem 1. Let A = (6,0), B = (0,-6), C = (0,0), X = (0,-3), Y = (4,0). Find Z on \overline{AB} such that \overline{AX} , \overline{BY} , and \overline{CZ} meet at a common point.

Problem 2. Fill in each blank in (a), (b), (c) and (d) with a single word; no work need be shown.

- (a) The medians of any triangle meet at the of that tri-
 - (b) The perpendicular bisectors of the sides of a triangle meet at the of that triangle.
- (c) The following three points are collinear: the centroid, the orthocenter, and the _____ of any triangle.
- (d) Two types of isometries whose fixed-point sets are empty are glide reflections

Problem 3. For any isosceles triangle whose largest angle has measure $3\pi/4$ prove that the ratio of the length of the longest side to that of the shorter sides is $\sqrt{2+\sqrt{2}}$. Hint: The simplest approach involves the cosine function but no trigonometric identities.

Problem 4. For an arbitrary triangle $\triangle ABC$ find the barycentric coordinates (in terms of the side lengths) of the point where the angle bisector of the angle at C meets the side \overline{AB} . [You may use the fact that the barycentric representation of the incenter is

the incenter is
$$\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}, \frac{c}{a+b+c}\right)^{\triangle},$$
 where a, b , and c are the lengths of the sides opposite A, B , and C , respectively.]

Problem 5. Give an example of a convex quadrangle ABCD that is not a parallelogram but which has the properties that \overrightarrow{AB} is parallel to \overrightarrow{CD} and $|\overrightarrow{BC}| = |\overrightarrow{DA}|$. A clear picture with appropriate labels will suffice (even if not drawn very well).

Problem 6. Let P = (5,5). Find a point Q on the circle ||X|| = 1 such that the line \overrightarrow{PQ} is tangent to the circle.

Date: November 9, 2011.

1

Problem 7. Under inversion in the circle of radius 2 centered at (0,0), where does the point (3,0) get mapped? That is, find $\mathcal{I}(3,0)$.

Problem 8. Find the equation of the Poincaré line that is incident with the points (0,2) and (3,7).