MATH 5335: GÉOMÉTRIE UNE A SHORT SOLUTION TO PROBLEM 3.8.26

INSTRUCTOR: ALEX VORONOV

There is a shorter solution of Problem 3.8.26, but harder to arrive at. It is motivated by change of coordinates, of which we know only a general idea from short, descriptive sections, such as Section 3.7, of the text. Otherwise, this solution will look like it is based more on a trick, rather than on common sense logic, whereas the solution I presented in class was based on common sense, even though it was quite long. Anyway, recall that we have decided to take our isometry $\mathcal{U}(X)$ to be the counterclockwise rotation about point $(3,2)$ by $\pi / 2$. For each vector X, what does \mathcal{U} do with the point $X+(3,2)$? That is right, it rotates it by 90 degrees about $(3,2)$, like any other point in the plane. The matrix of such a rotation about the origin would be

$$
N=\left[\begin{array}{cc}
\cos \pi / 2 & -\sin \pi / 2 \\
\sin \pi / 2 & \cos \pi / 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

The result will be a vector pointing out from $(3,2)$, so the resulting point will be $N[X]+[(3,2)]$. Thus, we get the following formula:

$$
\mathcal{U}(X+(3,2))=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

We know that, as any isometry, $\mathcal{U}(Y)=M[Y]+[P]$ for some matrix M and vector P. Plugging in $X+(3,2)$ for Y, we get

$$
M\left([X]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)+[P]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

and

$$
M[X]+M\left[\begin{array}{l}
3 \\
2
\end{array}\right]+[P]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

for any X. Thus, we will have

$$
M=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

and

$$
[P]=-M[(3,2)]+[(3,2)]=-[(-2,3)]+[(3,2)]=[(5 .-1)]
$$

Finally,

$$
U(X)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right][X]+\left[\begin{array}{c}
5 \\
-1
\end{array}\right]
$$

