SAMPLE FINAL PROBLEMS - MATH 5378, SPRING 2002

THIS WILL BE A CLOSED-BOOK, CLOSED-NOTES EXAM. YOU CAN USE IN YOUR SOLUTIONS ANY RESULT THAT WAS COVERED IN CLASS OR BY THE TEXT. YOU CAN ALSO USE ANY OF THE RESULTS FROM THE HOMEWORK.

- (1) Assume $\alpha(s)$ is a unit speed curve of nonzero constant curvature whose normal lines are all perpendicular to a given constant vector. Show that α is part of either a circle or a standard circular helix, which is a curve $\beta(t)$ which, after a motion of the space, may be represented by an equation $\beta(t) = (a \cos t, a \sin t, bt)$, for $a \neq 0, b \neq 0$.
- (2) Show that a space curve with $\tau(s) \neq 0$ and $\kappa'(s) \neq 0$ for all s lies on a sphere if and only if

$$\left(\frac{1}{\kappa}\right)^2 + \left(\left(\frac{1}{\kappa}\right)'\frac{1}{\tau}\right)^2 = \text{const.}$$

- (3) Compute the first fundamental form of the following surfaces:
 - (a) x
 ⁻(u, v) = (^a/₂ (u + ¹/_u), ^b/₂ (u ¹/_u), v) (the hyperbolic cylinder);
 (b) x
 ⁻(s,t) = α(s) + tB(s) (the binormal surface of a curve α(s) with a binormal B(s)).
- (4) Show that a compact, regular, oriented surface M in \mathbb{R}^3 has a point with K > 0. Furthermore, show that if M is not homeomorphic to a sphere, then it also has a point with K < 0 and a point with K = 0.
- (5) Show there is no surface in \mathbb{R}^3 with $E = G = \ell = 1$, F = m = 0 and n = -1.
- (6) Let $\beta : I \longrightarrow \mathbb{R}^3$ be a curve of nonzero curvature and let $\vec{x}(u, v) = \beta(u) + v\beta'(u)$ be its tangent surface. Show that it is locally isometric to a cone (without the vertex).
- (7) Compute the second fundamental form, the Gaussian and the mean curvatures of the following surface: $xyz = a^3$.
- (8) Find the holonomy along a closed curve α on the unit sphere $x^2 + y^2 + z^2 = 1$, if
 - (a) α is a parallel;
 - (b) α consists of two meridians different by an angle ϕ and the part of the equator between them.
- (9) Prove that on a surface of revolution, a meridian is always a geodesic.
- (10) Let M be a surface in \mathbb{R}^3 such that all its geodesics are plane curves. Show that M is either a plane, or a sphere.
- (11) Find the geodesics on a general cylindrical surface

$$\vec{x}(u,v) = (f(u), g(u), v)_{t}$$

where u is the arclength parameter of the base curve (f(u), g(u)).

(12) Describe the geodesics on \mathbb{R}^2 , S^2 , the cylinder $x^2 + y^2 = 1$.

Date: May 10, 2002.

SAMPLE FINAL PROBLEMS - MATH 5378, SPRING 2002

(13) Consider the catenoid $\vec{x}(u, v) = (u, \cosh u \cos v, \cosh u \sin v)$. Recall that in one of the homework problems you computed its Gaussian curvature as $K = -1/\cosh^4 u$. Show that there is exactly one simple closed geodesic on the catenoid.

 $\mathbf{2}$