
PROBLEM SET 11: SOLUTIONS

6.3.2 d/ds(V · α′) = ∇α′V · α′ + V · ∇α′α′ = 0 · alpha′ + V · 0 = 0. Similarly,
d/ds(V ·V ) = 0 and d/ds(α′ ·α′) = 0. This means V ·α′, |V |, and |α′| are constant,
and therefore, cosφ = V · α′/(|V ||α′|) is also constant. Thus so is φ.

For the angle between V and W , it is the same story: you show that V ·W is
constant.

If the holonomy of V along a curve is θ(1)− θ(0) and the angle between V and
W is φ, which is constant along the curve by the above, then the holonomy of W
along the curve will be θ(1) + φ− (θ(0) + φ) = θ(1)− θ(0).
5.1.2 The topmost parallel is a circle α(s) of radius a, therefore, κ = 1/a. α′ will be
the tangent to this circle, while α′′ = κn = n/a, where n is the unit normal to the
circle, will point to the center. α′′ × α′ will then point in the direction of negative
z axis, by the thumb rule. A unit exterior normal to the torus at the topmost
parallel points in the direction of positive z axis. Thus θ = π and cos θ = −1 and
κg = κ cos θ = −1/a. The normal curvature is computed using the angle between
the normal to the curve and the normal to the surface at this curve. This angle is
π/2, whose cosine is zero. Thus k = κ · 0 = 0, and the equation κ2 = k2 + κ2

g is
equivalent to 1/a2 = 0 + 1/a2, which is true.
5.1.3 Let T be the unit tangent to α, a curve on an (oriented, as usually) surface,
U the unit normal to the surface, which is of course orthogonal to T . Then T , U ,
and T × U form an orthonormal frame, and what we need to do is to decompose
α′′ in this frame: α′′ = aT + bU + cT ×U . Taking the dot products of this equation
with the elements of the orthonormal frame, we find a = α′′ · T , b = α′′ · U , and
c = α′′ · T × U . This already gives the required formula for b. It remains to find
the dot products for a and c.

Let s be the arclength parameter s =
∫ t
t0
|α′(t)|dt and ν = ds/dt = |alpha′|.

T = d/dsα(t(s)) = α′ · dt/ds = α′/ν. Differentiate α′ · α′ = ν2. We will get
2α′′ × α′ = 2νdν/dt. Plug in α′ = νT into the left-hand side to get a = α′′ · T =
dν/dt.

Now, α′′ ·T×U = α′′ · α
′

ν ×U = α′′×α′ ·U/ν, because both are the determinants of
the same 3×3 matrix up to an even row permutation. Now it is time to compute α′′:
we have d/ds(α′) = α′′dt/ds = α′′/ν. Recall our previous computations: α′ = νT ,
whence on the other hand d/ds(α′) = (dν/ds)T+νdT/ds = (dν/ds)T+νκN , where
N is the normal to the curve. Combining this with the previous computation of
d/dsα′, we get α′′ = ν((dν/ds)T + νκN). Thus c = α′′ × α′ = ν2((dν/ds)T ×
T + νκN × T ) = ν3κN × T . Now α′′ × α′ · U/ν = ν2κ|N × T ||U | cos θ, where θ is
the angle between N × T and U . Continuing the computation, we get c = ν2κg,
because N , T , and U are unit vectors, and κg = κ cos θ.
5.1.6 (the “if” part) If α lines in a plane P perpendicular to M anywhere their
intersection, then the curve normal is in P . Since the curve normal N is perpendic-
ular to the curve tangent, N will be parallel to the surface normal U , i.e. N = ±U .
Therefore α is a geodesic.
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Spα
′ = −∇α′U = ±∇α′N = ±N ′ = ±κT ± τN = ±κT = ±κα′, because τ = 0

as α is a plane curve.
5.2.1 For the cylinder x = (cosu, sinu, v) and xu = (− sinu, cosu, 0), xv = (0, 0, 1),
and E = 1, F = 0, G = 1. The geodesic equations become u′′ = v′′ = 0, which
solve as u = at+ b and v = ct+ d, which describe all possible lines in the uv plane.
Identifying these lines on the cylinder, we see that the geodesics are the vertical
lines, the horizontal circles, and the helices.
5.2.2 Differentiating α′ ·α′ = c, we get 2u′′u′E+ (u′)2Euu

′+ (u′)2Evv
′+ 2v′′v′G+

(v′)2Guu
′ + (v′)2Gvv

′ = 0. Replacing u′′ by the first geodesic equation, we get the
second one after all cancellations.

Reversing these calculations means using the two geodesic equations to show
that the above equation, which is equivalent to (α′ ·α′)′ = 0, is satisfied. Thus, the
speed of a geodesic is constant.
5.2.3 The geodesics are lines of curvature, therefore, their tangent vectors are
eigenvectors of the shape operator at all points. Since in each tangent direction
at each point of the surface, there goes a geodesic, we see that all tangent vectors
are eigenvectors of the shape operator. Then from linear algebra, at each point of
the surface, the eigenvalues must be all equal (If you do not know this fact, it is
a simple exercise: show that if all vectors are eigenvectors for a matrix, then the
corresponding eigenvalues are all equal), which means the principal curvatures are
equal. Therefore, each point is umbilc. Then by Theorem 3.5.1 M is part of a plane
or a sphere.

1. For a torus, the parallels u = 0, u = π/2, and u = π are called the maximum
parallel, the topmost parallel, and the minimum parallel, respectively. Check which
of these parallels are geodesics and which are lines of curvature.
Solution. The maximum and the minimum parallels are geodesics, because their
normals are obviously parallel to the normal to the torus. The topmost parallel
is not a geodesic , because its normal is horizontal, while the normal to the torus
along it is vertical.

The maximum and minimum parallels are lines of curvature, because they are
plane geodesics, see a problem from the previous homework. The topmost parallel α
is a line of curvature, because the surface normal ~N along it is vertical and thereby
constant. Therefore, its covariant derivative in any direction is zero. In particular,
Sp(α′) = −∇α′ ~N = 0 = 0 ·α′. By definition, this means alpha is a line of curvature.

2. Intersect the cylinder x2 + y2 = 1 with a plane passing through the x axis
and making an angle θ with the xy plane. Show that the intersecting curve is an
ellipse C. Compute the geodesic curvature of C in the cylinder at the points where
C meets its axes.
Solution. These will four points on this picture: a top one, two middle ones and
a bottom one. The geodesic curvature at the middle ones will be zero, because
the normal to the ellipse at these points will point to its center, which is on the
central axis of the cylinder and therefore parallel to the normal of the cylinder. The
geodesic curvature of the top and the bottom ones is obtained by computing the
curvature of the ellipse at such a point and multiplying it by the sine of the angle
between the curve normal and the surface normal, which is the same as θ. Thus,
the answer will be κ sin θ, where κ is the curvature of the ellipse at a point where
it meets its long axis, and we have to find it.
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Parameterize the ellipse by u = x and v = y/ cos θ — this is a parameterization
of the slanted plane in which the uv distance will be the same as the distance in
space. In this plane, the ellipse will be given by the equation u2 + v2 cos2(θ) = 1,
in which we recognize an ellipse, by the way. Let b = 1/ cos(θ) and parameterize
the ellipse α(t) by u = cos t, v = b sin t. Then we need to find the curvature of
this curve at t = π/2. u′ = − sin t, v′ = b cos t, and (α′)2 = sin2 t + b2 cos2 t,
which means it is not the arclength. To find the curvature, we have to pass to an
arclength parameter s =

∫
|α′(t)|dt. Note that ds/dt = |α′|, which will be useful

later. Notice also that at t = π/2, (α′)2 = 1 and ds/dt = 1. Let us find T and
dT/ds, and we will get κ = |dT/ds|. Then α′ = dα/dt = (dα/ds)(ds/dt) = T |α′|.
We have computed α′ and its length above. This will allow us to find T as a
function of t. Take the derivative of T in t and compute it through the derivative
in s: dT/dt = (dT/ds)(ds/dt) This will produce dT/ds and finally its length, which
is κ. The answer is κ = cos2 θ at t = π/2, and κg = cos2 θ sin θ.


