SOLUTION OF PROBLEM 10 FROM THE SECOND SAMPLE SET

Since the curve is a geodesic, its unit normal N is equal to the unit normal U to the surface. (In general, this is true up to a sign, but we can change the orientation on the surface, to make $N=U$.) Using one of the Frenet formulas, we get $U^{\prime}=N^{\prime}=-\kappa T+\tau B$. Thus $U^{\prime} \cdot U^{\prime}=\kappa^{2}+\tau^{2}$. Let us compute $U^{\prime} \cdot U^{\prime}$, using the first and the second fundamental forms. If we show $U^{\prime} \cdot U^{\prime}=-K$, we are done.

Use the chain rule: $U^{\prime}=U_{u} u^{\prime}+U_{v} v^{\prime}$. We computed the partials U_{u} and U_{v} (which were interesting to us, because they are equal to $-S_{p}\left(x_{u}\right)$ and $-S_{p}\left(x_{v}\right)$, respectively), when we obtained the Weingarten equations and the formulas for the mean and the Gaussian curvatures through the first and the second fundamental forms. There we introduced a matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

so that

$$
\begin{aligned}
U_{u} & =a_{11} x_{u}+a_{21} x_{v}, \\
U_{v} & =a_{12} x_{u}+a_{22} x_{v} .
\end{aligned}
$$

In other words, this matrix was defined by these equations. In the matrix form, this equation may be rewritten as follows.

$$
\binom{U_{u}}{U_{v}}=A^{T}\binom{x_{u}}{x_{v}}
$$

Our chain rule above in the matrix form looks like

$$
U^{\prime}=\left(\begin{array}{ll}
U_{u} & U_{v}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} .
$$

Then

$$
\begin{aligned}
U^{\prime} \cdot U^{\prime}=\left(U^{\prime}\right)^{T} U^{\prime}= & \left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right)\binom{U_{u}}{U_{v}}\left(\begin{array}{ll}
U_{u} & U_{v}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} \\
= & \left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) A^{T}\binom{x_{u}}{x_{v}}\left(\begin{array}{ll}
x_{u} & x_{v}
\end{array}\right) A\binom{u^{\prime}}{v^{\prime}} \\
& =\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) A^{T} \mathrm{I} A\binom{u^{\prime}}{v^{\prime}},
\end{aligned}
$$

where I is the first fundamental form

$$
\mathrm{I}=\binom{x_{u}}{x_{v}}\left(\begin{array}{ll}
x_{u} & x_{v}
\end{array}\right)=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) .
$$

We computed this matrix A by obtaining the equation

$$
-\mathrm{II}=A^{T} \mathrm{I}
$$

where

$$
\mathrm{II}=\left(\begin{array}{cc}
l & m \\
m & n
\end{array}\right)
$$

is the second fundamental form. Thus we can replace $A^{T} I$ by - II in the equation for $U^{\prime} \cdot U^{\prime}$ above:

$$
U^{\prime} \cdot U^{\prime}=-\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \operatorname{II} A\binom{u^{\prime}}{v^{\prime}} .
$$

Since the fundamental forms are symmetric, $\mathrm{II}=\mathrm{II}^{T}=-\mathrm{I}^{T} A=-\mathrm{I} A$, and we continue as follows.

$$
U^{\prime} \cdot U^{\prime}=\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \mathrm{I} A^{2}\binom{u^{\prime}}{v^{\prime}}
$$

Now recall that $A^{2}-2 H A+K \mathrm{Id}=0$ (the characteristic equation of the matrix $A)$. The surface is minimal, so $H=0$ and we have $A^{2}=-K$ Id. Finally,

$$
U^{\prime} \cdot U^{\prime}=-K\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \mathrm{I}\binom{u^{\prime}}{v^{\prime}}
$$

But $x^{\prime}=x_{u} u^{\prime}+x_{v} v^{\prime}$ or in the matrix form

$$
x^{\prime}=\left(\begin{array}{ll}
x_{u} & x_{v}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}}
$$

and

$$
x^{\prime} \cdot x^{\prime}=\left(x^{\prime}\right)^{T} x^{\prime}=\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \mathrm{I}\binom{u^{\prime}}{v^{\prime}} .
$$

$x^{\prime} \cdot x^{\prime}=1$, because $x(s)$ is the equation of the geodesic, which we parameterized by arclength, as usually. Thus,

$$
U^{\prime} \cdot U^{\prime}=-K
$$

