Posted: 09/13, modified: 09/17; due: Friday, 09/19/2014
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 1 from the Extended Real Number System through Euclidean Spaces. Skim the Appendix to Chapter 1, if you have not done so in the previous week. Chapter 2: Finite, Countable, and Uncountable Sets.

## Problems:

1. Prove that there is no way to introduce an order on $\mathbb{C}$ so that it becomes an ordered field. Hint: Shall we have $i>0$ or $i<0$ ?
2. Show that the field of complex numbers is not isomorphic to the field of real numbers. (An isomorphism between fields is a bijection that preserves addition and multiplication. We looked at order isomoprhisms between ordered fields, and an isomorphism is a similar notion.)
3. Suppose $z$ is a nonzero complex number. Show that there is a unique pair $r \in \mathbb{R}, w \in \mathbb{C}$ such that $r>0,|w|=1$, and $z=r w$.
4. Define $e^{i t}$ for real $t$ as $\cos t+i \sin t$. Show that $\left|e^{i t}\right|=1$ and $e^{i s+i t}=$ $e^{i s} e^{i t}$. Show that every nonzero complex number can be factored into $r e^{i t}$ with $r, t \in \mathbb{R}$ and $r>0$. This is called polar decomposition.
5. Show, using polar decomposition, that for any $n \in \mathbb{N}$, there are exactly $n$ solutions to the equation $z^{n}=1$.
6. Show that any automorphism of $\mathbb{R}$ is trivial, i.e., is the identity. Hint: First, show that the rationals must be fixed by an automorphism. Then show that an automorphism must preserve the order of the real numbers. (Surprise: algebra enforces analysis!)
7. Show that the taxicab metric in $\mathbb{R}^{k}$ is positive definite, symmetric, and satisfies the triangle inequality.
8. Show that there can be no bijection between a finite set and a proper subset of it. Hint: Use the pigeonhole principle and interpret it as the fact that a map from $J_{m}$ to $J_{n}$ with $m>n$ cannot be injective.
9. Show that the set of polynomials with integral coefficients is countable. Hint: Use the idea of "counting" the elements of $\mathbb{Q}$ we had in class.
10. If $A$ is an infinite set, then $A$ has a countable subset.
11. If $A$ is a set (including the empty set), then there is no bijection between $A$ and the set $P(A)$ of all subsets of $A$. Hint: Use the idea of the proof of Cantor's theorem we had in class, i.e., assume there is a bijection $f: A \rightarrow P(A)$ and then construct a subset of $A$ which could not be $f(a)$ for any $a \in A$.
12. (Challenge problem - more like an independent project, need to know/learn more than we know officially, such as groups and some field theory; okay to skip, not for credit, i.e., does not carry any points). Describe the automorphism group $\operatorname{Aut}(\mathbb{C})$.
