MATH 5615H: HONORS ANALYSIS SAMPLE FINAL EXAM (PART I) NOW, WITH SELECTED SOLUTIONS

INSTRUCTOR: SASHA VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper, scratch paper, and a pencil or pen may be kept on your desk during the test. You must show all work.

Good luck!

Problem 1. Let x_1 be a real number, $x_1 > 1$, and let $x_{n+1} = 2 - 1/x_n$ for $n \in \mathbb{N}$. Show that the sequence $\{x_n\}$ is monotone and bounded and find its limit.

Problem 2. Is there a metric space which is countable and compact?

Problem 3. Assume that f(x) is defined a real-valued for x > 0. Consider two statements:

- (1) For every $m \in \mathbb{N}$, x > 1/m implies f(x) < 1/m.
- (2) x > 0 implies $f(x) \le 0$.

Prove that (1) implies (2).

Problem 4. Prove or disprove the following statements with a precise ε - δ argument for each.

- (1) The function f(x) = x is uniformly continuous for all real x.
- (2) The function $g(x) = \sin x$ is uniformly continuous for all real x.

Solution. Answer: Uniformly continuous. Given an $\varepsilon > 0$, take $\delta = \min \varepsilon/2, \pi/2, 1 > 0$. Then for any h such that $|h| < \delta$, we have

• $|\sin h| \leq |h|$: $|\sin h|$ is the shortest distance from the point |h| radians, which will be in the first quadrant, because $|h| < \pi/2$, on the unit circle to the x axis, whereas |h| is the length of the path along the circle;

• $0 < 1 - \cos h = 2\sin^2(h/2) \le h^2/2 < |h|/2$, because |h| < 1. Thus, $|\sin(x+h) - \sin x| = |\sin x(\cos h - 1) - \sin h \cos x| \le |\sin x| \cdot |\cos h - 1| + |\sin h| \cdot |\sin x| \le 1 - \cos h + |\sin h| < |h|/2 + |h| < \varepsilon/4 + \varepsilon/2 < \varepsilon$.

(3) The function $(f \cdot g)(x) = x \sin x$ is uniformly continuous for all real x.

Date: December 7, 2014.

Solution. Answer: Not uniformly continuous. Take $\varepsilon = 1$. Then for any given $\delta > 0$, take $\delta_1 = \min(\pi/2, \delta/2) > 0$ and $n \in \mathbb{N}$ such that $2\pi n \sin \delta_1 > 1$. Such n exists because we can apply the Archimedean principle to $2\pi \sin \delta_1$ which is > 0, given that we made sure that $0 < \delta_1 < \pi/2$. Then take $x = 2\pi n$ and $y = 2\pi n + \delta_1$. Then $|x - y| = \delta_1 < \delta$, but $|x \sin x - y \sin y| = |y \sin y| = (2\pi n + \delta_1) \sin \delta_1 > 2\pi n \sin \delta_1 > 1$.

Problem 5. Prove that if a power series $\sum_{n=0}^{\infty} c_n z^n$ converges for some $z = z_0 \neq 0 \in \mathbb{C}$, then $\sum_{n=0}^{\infty} c_n z^n$ converges absolutely for all $z \in \mathbb{C}$ with $|z| < |z_0|$. What does this say about the radius of convergence of the series? Use this to show that the radius of convergence of the exponential series $\sum_{n=0}^{\infty} z^n/n!$ is $+\infty$.

Solution. Apply the Root **Divergence** Test (Theorem 3.33 (b), not (a) or (c)!) to the convergent series $\sum_{n=0}^{\infty} c_n z_0^n$:

(0.1)
$$\limsup_{n \to \infty} \sqrt[n]{|c_n|} |z_0| \le 1.$$

r

because otherwise the series would diverge. (We had to use $\limsup p$, rather than $\lim p$, because $\lim p$ does not always exist, whereas $\limsup p$ does, at least in the extended real system. This problem with $\limsup p$ would render the conclusion $\lim_{n\to\infty} \sqrt[n]{|c_n|} |z_0| \leq 1$ to be simply incorrect: how can you **dare to compare** something that does not always exist with number 1?) Well, anyway, if $|z| < |z_0|$, then $\limsup_{n\to\infty} \sqrt[n]{|c_n|} |z| < \limsup_{n\to\infty} \sqrt[n]{|c_n|} |z_0|$, whence $\limsup_{n\to\infty} \sqrt[n]{|c_n|} |z| < 1$ and thereby, applying the Root **Convergence** Test (Theorem 3.33 (a), finally!) to the series $\sum_{n=0}^{\infty} |c_n z^n|$, we see that the series $\sum_{n=0}^{\infty} c_n z^n$ converges absolutely.

Remark. We could have directly used Theorem 3.39 about **divergence** of power series to conclude from the convergence of the power series at $z = z_0$ that $|z_0| \leq R$, where R is the radius of convergence. The same theorem would then imply that the power series converges absolutely for $|z| < |z_0|$, because in this case |z| < R. I have put together the above, longer argument, because it uses more elementary facts and is more instructive.

The radius of convergence is, by definition, $R = 1/\limsup_{n\to\infty} \sqrt[n]{|c_n|}$. Because of Inequality (0.1), we have $R \ge |z_0|$.

For the exponential series, apply the Ratio Test (Theorem 3.34 (a)) to see that the exponential series converges for any $z = z_0 \neq 0 \in \mathbb{C}$. The test applies, because

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{|n! z_0^{n+1}|}{|(n+1)! z_0^n|} = \lim_{n \to \infty} \frac{|z_0|}{n+1} = 0 < 1,$$

meaning "exists and equals 0," as always. (This inequality yields $\limsup_{n\to\infty} |a_{n+1}/a_n| = \lim_{n\to\infty} |a_{n+1}/a_n| < 1$.) Thus, by the above, the radius of convergence R of the exponential series is at least $|z_0|$ for any $z_0 \neq 0 \in \mathbb{C}$. The only extended real number which satisfies this is $R = +\infty$.