MATH 5615H: ANALYSIS A BRIEF SOLUTION TO PROBLEM 2 ON HW 4

INSTRUCTOR: SASHA VORONOV

Here is a solution of Problem 2 on Homework 4.
Step 1. Construct a collection $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ of open sets in X, possibly with repetitions $U_{i}=U_{j}$ for some $i \neq j \in \mathbb{N}$, so that for any open set $V \subset X$ and each $x \in A \cap V$, there is $n \in \mathbb{N}$ such that $x \in U_{n} \subset V$. (Such a collection is called a countable base for A.)

To construct a countable base, first show that for each $n \in \mathbb{N}$, there is a finite number of balls of radius $1 / n$ covering A. Indeed, take $x_{1} \in A$ and the ball $B_{1 / n}\left(x_{1}\right)$ of radius $1 / n$ around x_{1}. If the ball covers A, we are done, stop. If not, there is $x_{2} \in A$ outside of the ball, which means $d\left(x_{2}, x_{1}\right) \geq 1 / n$. Take the ball $B_{1 / n}\left(x_{2}\right)$. If the union of these two balls covers A, we are done, stop. Otherwise, take $x_{3} \in A$ not in the union of these two balls. Note that x_{3} is at least at distance $1 / n$ from x_{1} and x_{2}. Take the ball $B_{1 / n}\left(x_{3}\right)$ and keep going. I claim that this process will not go unboundedly. Indeed, if it did, we would have an infinite set $\left\{x_{1}, x_{2}, \ldots\right\}$ in A. It was given in the problem that each infinite subset of A has a limit point. Let x be a limit point of the above infinite set. Then if we take a ball of sufficiently small radius around x, it will contain at least two different points x_{i} and x_{j} (take a ball around x of one radius, find x_{i} in that ball, then take a ball around x of sufficiently smaller radius and find x_{j} in it). If we take the radius of the first ball to be less than $1 / 2 n$, then $d\left(x_{i}, x_{j}\right)<1 / n$, which contradicts the construction of the sequence of points.

Then take as $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ the balls from these finite collections of balls for all $n \in \mathbb{N}$. It is a countable (of finite) collection, because we have taken the union of countably many finite sets, possibly some of them repeating. It is also a countable base. Indeed, you get a countable base, because for each open V and $x \in A \cap V$, there is a ball B of radius $r>0$ centered at x and contained in V, because V is open. Take n such that $1 / n<r / 2$. Then, since A is covered by the balls of radius $1 / n$ from our collection $\left\{U_{i}\right\}$, the point x will be in one of these balls U_{i}. The inequality $1 / n<r / 2$ ensures that the ball U_{i} of radius $1 / n$ is

[^0]contained in the ball B of radius r, and that ball was part of V. Thus, we get $x \in U_{i} \subset V$.

Step 2. Let us use a countable base $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ that we constructed in Step 1. Given an open covering $\left\{V_{\alpha}\right\}_{\alpha \in J}$ of A, we need to find a countable of finite subcovering. Define $I:=\left\{n \in \mathbb{N} \mid U_{n} \subset V_{\alpha}\right.$ for some $\alpha \in$ $J\}$. Obviously, $I \subset \mathbb{N}$. Thus, it is countable or finite. Choose one such α for each $n \in I$ and call it $\alpha(n)$. Claim: $\left\{V_{\alpha}\right\}_{\alpha \in I}$ is a countable of finite subcovering of A. We just saw it was countable or finite, it is a subcollection of $\left\{V_{\alpha}\right\}_{\alpha \in J}$ by construction. It remains to see that the subcollection covers A.

For each $x \in A$ there is $\alpha \in J$ such that $x \in V_{\alpha}$. Apply the countable base property (Step 1) to V_{α} and $x \in A \cap V_{\alpha}$, that is to say, find $n \in \mathbb{N}$ such that $x \in U_{n} \subset V_{\alpha}$. Then this n is in I by definition of I. Take $\alpha(n)$ corresponding to that n. Then $U_{n} \subset V_{\alpha(n)}$ by definition of $\alpha(n)$. We also knew that $x \in U_{n}$. Thus $x \in V_{\alpha(n)}$.

[^0]: Date: October 3, 2014.

