Math 8202

Date due: March 1, 2010
Hand in only the starred questions. One of the other problems may show up on the quiz on March 8, the International Women's Day. :-)
If you want me to do in class any of the questions I have given you, do let me know (on or after the due date for the assignment).
Section 5.1: 1, 2, $4^{*}, 5,6,18$.
Section 5.4: 2, 4, $7^{*}, 10,11,13,15,17,19$.
N^{*}. Show that every group of order 1001 is cyclic.
O. Let G be the group of all isometries of the cube, and let H be the subgroup consisting of rotations which preserve the cube. Let -1 denote the element of G which is the transformation of \mathbb{R}^{3} given by multiplication by -1 .
(1) Show that $G=H \times\langle-1\rangle$. [For subgroups H and K of a group G, we write $G=H \times K$ to emphasize that G is the internal direct product of H and K, i.e., $G=H K$, the subgroups are normal and intersect trivially.]
(2) Show that if $g \in G$ is any element of order 2 other than -1 , then $G \neq$ $H\langle-1\rangle$. [To do this you may need to prove that the center of H is $\{1\}$. Either use the isomorphism with S_{4} or note that if you conjugate one rotation by another rotation you get rotation about an axis obtained by applying the second rotation to the axis of the first.]
P*.
(1) Let G be the group of all isometries of the tetrahedron, and let H be the subgroup consisting of rotations. Determine whether or not $G=H \times K$ for some subgroup K of G.
(2) Let G be the group of all isometries of the icosahedron, and let H be the subgroup consisting of rotations. Determine whether or not $G=H \times K$ for some subgroup K of G.
Q. Show that the group $\operatorname{Aff}(V)=\{\mathbf{x} \mapsto A \mathbf{x}+\mathbf{b} \mid \mathbf{x} \in V, A \in \mathrm{GL}(V), \mathbf{b} \in V\}$ of affine transformations of a vector space V is a semidirect product $V \rtimes \mathrm{GL}(V)$.
R^{*}. Show that the group Z_{4} gives an example of an extension $Z_{2} \unlhd Z_{4}$ which is not isomorphic to a semidirect product $Z_{2} \rtimes Z_{2}$.

