MATH 8211: COMMUTATIVE AND HOMOLOGICAL ALGEBRA PROBLEM SET 2, DUE NOVEMBER 3, 2003

SASHA VORONOV

I encourage you to cooperate with each other on the homeworks.

Convention: all rings are commutative with an identity element $1 \neq 0$, all ring homomorphisms carry 1 to 1, and a subring shares the same identity element with the ring.

Problem 1. For a ring A, prove that A^m and A^n are isomorphic as A-modules, if and only if m = n. [Hint: use the existence of maximal ideals.]

Problem 2. If A is a ring and I a finitely generated ideal which is *idempotent*, i.e., satisfies $I = I^2$, prove that I is generated by a single idempotent element. [Hint: use a corollary from the determinant trick we used to prove Nakayama's lemma.]

Problem 3. Let A be an Artinian integral domain (i.e., one whose ideals satisfy the descending chain condition). Prove that A is a field. Deduce that every prime ideal of an Artinian ring is maximal.

Problem 4. Prove the Hilbert basis theorem for the formal power series ring A[[X]] for Noetherian A.

Problem 5. Exercise 13.2 of [E].

Problem 6. Exercise 13.3 of [E]. [An *affine ring* is a just finitely generated algebra over a field. Note also that the ring of invariants will automatically be Noetherian by the Hilbert basis theorem.]

Problem 7. Let $n \in \mathbb{Z}$ be a number not divisible by any p^3 . Find the normalization (i.e., integral closure) of $\mathbb{Z}[\sqrt[3]{n}]$. [Hint: suppose $n = l^2m$; then the field $\mathbb{Q}(\sqrt[3]{n})$ also contains $\sqrt[3]{lm^2}$. Write any element of $\mathbb{Q}(\sqrt[3]{n})$ in the form $a + b\sqrt[3]{n} + c\sqrt[3]{lm^2}$ with $a, b, c, \in \mathbb{Q}$ and calculate its minimal polynomial over \mathbb{Q} .]

Problem 8. Prove the following refinement of the *Noether normalization lemma*. Let A be a finitely generated algebra over an *infinite* field k. Then there exist elements $z_1, \ldots, z_m \in A$ such that

- (1) z_1, \ldots, z_m are algebraically independent over k;
- (2) A is finite over $B = k[z_1, \ldots, z_m]$; and
- (3) z_1, \ldots, z_m are linear combinations of the generators of A.

Problem 9. How does the result about a bijection between k^n and m-Spec $k[X_1, \ldots, X_n]$ for $k = \bar{k}$ follow from Exercise 4.27 of [E]?

Problem 10 (A version of Weak Nullstellensatz over an arbitrary field). Let k be a field. For an ideal $J \subset k[X_1, \ldots, X_n]$ and an extension field $k \subset K$, define a K-valued point of V(J) to be a point $(a_1, \ldots, a_n) \in K^n$ such that $f(a_1, \ldots, a_n) = 0$ for all $f \in J$. State an prove a version of the weak Nullstellensatz (on the structure of maximal ideals of $A = k[X_1, \ldots, X_n]/J$) in terms of K-valued points of V(J) for all algebraic extension fields K of k.

Date: October 17, 2003.

Problem 11. Let k be a field and $k \subset K$ a Galois field extension with Galois group G = Gal(K/k). Prove that two K-valued points (a_1, \ldots, a_n) and (b_1, \ldots, b_n) of V(J) correspond to the same maximal ideal of $k[X_1, \ldots, X_n]$, if and only if there is an element $\sigma \in G$ such that $(a_1, \ldots, a_n) = (\sigma(b_1), \ldots, \sigma(b_n))$. [Hint: how would you do this, if n = 1?]

Problem 12. Exercise 4.11.a of [E].

Problem 13. Exercise 4.33 of [E].

Problem 14. Show that the Nullstellensatz implies

$$\operatorname{rad} J = \bigcap_{\substack{m \in \operatorname{m-Spec} A \\ m \supset J}} m$$

for any ideal $J \subset A = k[X_1, \ldots, X_n]$, when $k = \overline{k}$.

Problem 15. Let A and B be geometric rings over an algebraically closed field k, *i.e.*, finitely generated, reduced k-algebras, $\phi : A \to B$ a k-algebra homomorphism, and

$$\phi^{\sharp} : \operatorname{m-Spec} B \to \operatorname{m-Spec} A$$

the inverse-image map $\phi^{\sharp}(m) := \phi^{-1}(m)$. Describe ϕ^{\sharp} as a polynomial map between the varieties m-Spec *B* and m-Spec *A* corresponding to *A* and *B*. [A polynomial map is defined in coordinates by polynomials.]