MATH 8211: COMMUTATIVE AND HOMOLOGICAL ALGEBRA PROBLEM SET 2, DUE NOVEMBER 3, 2003

SASHA VORONOV

I encourage you to cooperate with each other on the homeworks.
Convention: all rings are commutative with an identity element $1 \neq 0$, all ring homomorphisms carry 1 to 1 , and a subring shares the same identity element with the ring.
Problem 1. For a ring A, prove that A^{m} and A^{n} are isomorphic as A-modules, if and only if $m=n$. [Hint: use the existence of maximal ideals.]
Problem 2. If A is a ring and I a finitely generated ideal which is idempotent, i.e., satisfies $I=I^{2}$, prove that I is generated by a single idempotent element. [Hint: use a corollary from the determinant trick we used to prove Nakayama's lemma.]
Problem 3. Let A be an Artinian integral domain (i.e., one whose ideals satisfy the descending chain condition). Prove that A is a field. Deduce that every prime ideal of an Artinian ring is maximal.
Problem 4. Prove the Hilbert basis theorem for the formal power series ring $A[[X]]$ for Noetherian A.
Problem 5. Exercise 13.2 of [E].
Problem 6. Exercise 13.3 of [E]. [An affine ring is a just finitely generated algebra over a field. Note also that the ring of invariants will automatically be Noetherian by the Hilbert basis theorem.]
Problem 7. Let $n \in \mathbb{Z}$ be a number not divisible by any p^{3}. Find the normalization (i.e., integral closure) of $\mathbb{Z}[\sqrt[3]{n}]$. [Hint: suppose $n=l^{2} m$; then the field $\mathbb{Q}(\sqrt[3]{n})$ also contains $\sqrt[3]{l m^{2}}$. Write any element of $\mathbb{Q}(\sqrt[3]{n})$ in the form $a+b \sqrt[3]{n}+c \sqrt[3]{l m^{2}}$ with $a, b, c, \in \mathbb{Q}$ and calculate its minimal polynomial over \mathbb{Q}.]
Problem 8. Prove the following refinement of the Noether normalization lemma. Let A be a finitely generated algebra over an infinite field k. Then there exist elements $z_{1}, \ldots, z_{m} \in A$ such that
(1) z_{1}, \ldots, z_{m} are algebraically independent over k;
(2) A is finite over $B=k\left[z_{1}, \ldots, z_{m}\right]$; and
(3) z_{1}, \ldots, z_{m} are linear combinations of the generators of A.

Problem 9. How does the result about a bijection between k^{n} and m-Spec $k\left[X_{1}\right.$, $\left.\ldots, X_{n}\right]$ for $k=\bar{k}$ follow from Exercise 4.27 of $[\mathrm{E}]$?
Problem 10 (A version of Weak Nullstellensatz over an arbitrary field). Let k be a field. For an ideal $J \subset k\left[X_{1}, \ldots, X_{n}\right]$ and an extension field $k \subset K$, define a K-valued point of $V(J)$ to be a point $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ such that $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $f \in J$. State an prove a version of the weak Nullstellensatz (on the structure of maximal ideals of $\left.A=k\left[X_{1}, \ldots, X_{n}\right] / J\right)$ in terms of K-valued points of $V(J)$ for all algebraic extension fields K of k.

[^0]Problem 11. Let k be a field and $k \subset K$ a Galois field extension with Galois $\operatorname{group} G=\operatorname{Gal}(K / k)$. Prove that two K-valued points $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ of $V(J)$ correspond to the same maximal ideal of $k\left[X_{1}, \ldots, X_{n}\right]$, if and only if there is an element $\sigma \in G$ such that $\left(a_{1}, \ldots, a_{n}\right)=\left(\sigma\left(b_{1}\right), \ldots, \sigma\left(b_{n}\right)\right)$. [Hint: how would you do this, if $n=1$?]
Problem 12. Exercise 4.11.a of [E].
Problem 13. Exercise 4.33 of [E].
Problem 14. Show that the Nullstellensatz implies

$$
\operatorname{rad} J=\bigcap_{\substack{m \in \text { m-Spec } A \\ m \supset J}} m
$$

for any ideal $J \subset A=k\left[X_{1}, \ldots, X_{n}\right]$, when $k=\bar{k}$.
Problem 15. Let A and B be geometric rings over an algebraically closed field k, i.e., finitely generated, reduced k-algebras, $\phi: A \rightarrow B$ a k-algebra homomorphism, and

$$
\phi^{\sharp}: \mathrm{m}-\operatorname{Spec} B \rightarrow \mathrm{~m}-\operatorname{Spec} A
$$

the inverse-image map $\phi^{\sharp}(m):=\phi^{-1}(m)$. Describe ϕ^{\sharp} as a polynomial map between the varieties m-Spec B and m-Spec A corresponding to A and B. [A polynomial map is defined in coordinates by polynomials.]

[^0]: Date: October 17, 2003.

