MATH 8253: ALGEBRAIC GEOMETRY HOMEWORK 4
 UPDATED WITH HINTS ON 11/1 DUE WEDNESDAY, NOVEMBER 2, 2:17 P.M.

INSTRUCTOR: SASHA VORONOV

Review your course notes and read Gathmann's Chapter 6 : Projective Varieties I: Topology from Section 6.19 through the end and Chapter 7 : Projective Varieties II: Ringed Spaces. Do the following problem and Exercises 6.29, 6.31, 7.7, 7.8, 7.30.

Problem A: Prove that the line with a doubled origin is not separated (i.e., not a variety), see the discussion before Def. 5.17. Hint: Use the universal property of the product, Prop. 5.15.

Hints. 6.29: Work with vector subspaces of K^{4} corresponding to all sorts of linear subspaces of \mathbb{P}^{3} and use linear algebra.
6.31(b): Use 5.23(b).
7.7: Use 7.8, even you have not done it. I do not know how to do 7.7 without 7.8. I guess, Gathmann meant to write these problems in the opposite order.
7.8: The idea might be to see what this map is in an affine open chart \mathbb{A}^{m}, say, $x_{0} \neq 0$, of the target space \mathbb{P}^{m} : the map is determined, at least in an open $U \subset \mathbb{P}^{n}$ by the pullbacks g_{1}, \ldots, g_{m} of the coordinate functions x_{1}, \ldots, x_{m} on \mathbb{A}^{m}. And those pullbacks must be regular on U, even quotients of homogeneous polynomials of same degree on, perhaps, some smaller open U. These determine where the points of U map to: they map to $\left[1: g_{1}: \cdots: g_{m}\right] \in \mathbb{A}^{m} \subset \mathbb{P}^{m}$. Try to get rid of the denominators and have no common factor of the resulting set of $m+1$ homogeneous polynomials of same degree without affecting the map. Try to cover the source \mathbb{P}^{n} with such U 's. Show that on overlaps these ($m+1$)-tuples of homogeneous polynomials are the same up to a constant factor.

Submit the homework by the start of our Wednesday, November 2, class meeting, i.e., by 2:17 p.m. Please submit it electronically to Gradescope at
https://www.gradescope.com/courses/445177,
which you can access through Canvas.

