The problem set is due at the beginning of the class on Monday, January 29.
Reading: Class notes from last term. (If you do not have them, ask someone for notes and use this as an excuse to make friends with a classmate and possibly form a study group.) Vakil: Sections 4.4.4-10, 9.1. Hartshorne: Exercise II.1.22, Sections II.2.3.5-6, Exercise II.2.12, Exercise II.5.17(c), Section II. 3 from Definition on p. 87 through mid-page 89. (All the exercises in this part of the assignment are for reference only; you do not have to solve them, unless you want to.)

Problem 1. Given a scheme X, let $h_{X}: \mathbf{S c h} \rightarrow$ Set be the associated functor of points, which maps a scheme S to the set $h_{X}(S):=\operatorname{Mor}(S, X)$ of morphisms $S \rightarrow X$ and is defined on morphisms in an obvious way.
(1) Show that a natural transformation $h_{x} \rightarrow h_{X^{\prime}}$ between functors of points of schemes X and X^{\prime} is induced by a morphism $X \rightarrow X^{\prime}$ of schemes. Show the same works for isomorphisms.
(2) Let $h_{X}^{\text {aff }}$ be the restriction of h_{X} to the full subcategory of affine schemes in $\mathbf{S c h}$. Show that the assertion of (1) remains true for natural transformations $h_{X}^{\text {aff }} \rightarrow h_{X^{\prime}}^{\text {aff }}$ between functors of points on the category of affine schemes, even if X and X^{\prime} are not necessarily affine.

Problem 2. Exercise 4.4.F in Vakil's The Rising Sea, November 18, 2017, version.
Problem 3. For a base scheme S and nonnegative integers m, n construct two universal (in S) S-morphisms $\mathbb{P}_{S}^{m} \rightarrow \mathbb{P}_{S}^{n}$, where $\mathbb{P}_{S}^{k}:=\mathbb{P}^{k} \times_{\text {Spec } \mathbb{Z}} S$, such that for $S=$ Spec K, where K is a field, the resulting maps $\mathbb{P}_{K}^{m}(K) \rightarrow \mathbb{P}_{K}^{n}(K)$ on K-points are
(1) $\left[x_{0}: \cdots: x_{m}\right] \mapsto\left[x_{0}: \cdots: x_{m}: 0: \cdots: 0\right]$ for any $0 \leq m \leq n$;
(2) $\left[x_{0}: \cdots: x_{m}\right] \mapsto\left[M_{0}(x): \cdots: M_{n}(x)\right]$, where M_{0}, \ldots, M_{n} are the $n=$ $\binom{m+d}{d}$ monomials in $x=\left(x_{0}, \ldots, x_{m}\right)$ of degree d for any $m \geq 0$ and $d \geq 1$. This is known as the Veronese map.

Problem 4. Show that in general, unlike the relative affine n-space \mathbb{A}_{S}^{n}, the relative projective n-space \mathbb{P}_{S}^{n} is not isomorphic to an n-fold fibered product of \mathbb{P}_{S}^{1} with itself. Hint: Count \mathbb{F}_{p}-points in $\mathbb{P}_{\mathbb{F}_{p}}^{2}$ and $\mathbb{P}_{\mathbb{F}_{p}}^{1} \times_{\mathbb{F}_{p}} \mathbb{P}_{\mathbb{F}_{p}}^{1}$.

Problem 5. Exercise 4.4.B in Vakil's The Rising Sea.
Problem 6. Exercise 4.4.E in Vakil's The Rising Sea.
Problem 7. Show that $X \times Y:=X \times_{\operatorname{Spec} \mathbb{Z}} Y$ is a categorical product in the category of schemes. Hint: This is a purely categorical statement having a purely categorical proof.

Problem 8. Exercise II.3.9(b) in Hartshorne. Here $k(s)$ means the field of rational functions of one variable s, the field of fractions of the polynomial algebra $k[s]$.

