The problem set is due at the beginning of the class on Wednesday, February 14 (or in my mailbox).

Reading: Class notes. Vakil (11/18/17 version): Sections 9.2-3 through 9.3.3, 3.6.12-S, 10.1 through 10.1.10, and 11.1 through 11.1.2. Hartshorne: Sections II. 3 (pp. 83-84, 86, 89-90), II. 4 (pp. 95-100), I. 1 (pp. 5-7).

Problem 1. Let $X=\operatorname{Spec} \mathbb{Z}[x, y] /\left(y^{2}-2 x\right)$ be the curve in $\mathbb{A}_{\mathbb{Z}}^{1}$ given by the equation $y^{2}-2 x=0$, a parabola. X is a \mathbb{Z}-scheme. If we change the base to \mathbb{C}, $X_{(\mathbb{C})}=X \times_{\mathbb{Z}}$ Spec \mathbb{C}, the curve will be isomorphic to $\mathbb{A}_{\mathbb{C}}^{1}$, because $\mathbb{C}[x, y] /\left(y^{2}-2 x\right) \cong$ $\mathbb{C}[y]$. Describe the fiber X_{p} of X over each point $p \in \operatorname{Spec} \mathbb{Z}$ as the spectrum of an algebra, such as we described $X_{(\mathbb{C})}$ as $\operatorname{Spec} \mathbb{C}[x, y] /\left(y^{2}-2 x\right)$. For which p is X_{p} isomorphic to the affine line (over a suitable field)? Do not forget the generic point $\eta \in \operatorname{Spec} \mathbb{Z}$ corresponding to the zero ideal.
Problem 2. Show that a quasi-compact open embedding $U \subset X$ into an S-scheme X of finite type results in an S-scheme U of finite type.

Problem 3. Show that a scheme of finite type over a Noetherian scheme is Noetherian.

Problem 4. Prove that our definition of separatedness of an S-scheme X (the image $\Delta_{X}(X)$ of the diagonal morphism $\Delta_{X}: X \rightarrow X \times_{S} X$ is closed) is equivalent to the following. An S-scheme X is separated over S if and only if for any two S morphisms $f, g: Y \rightarrow X$, the set $\{y \in Y \mid f(y) \equiv g(y)\}$ is closed in Y. Here $f(y) \equiv$ $g(y)$ reads f and g coincide scheme-theoretically at a point $y \in Y$ and means that the compositions $f \circ \iota_{y}$ and $g \circ \iota_{y}$ of f and g with $\iota_{y}: \operatorname{Spec} k(y) \rightarrow Y$ are equal. (This condition may be reworded as $f(y)=g(y)=: x$ and that the field homomorphisms $k(x) \rightarrow k(y)$ coming from the homomorphisms $f_{y}^{\#}, g_{y}^{\#}: \mathcal{O}_{X, x} \rightarrow \mathcal{O}_{Y, y}$ of the stalks coincide.) Hint: Show that $f(y) \equiv g(y)$ if and only if $(f, g)(y) \in \Delta_{X}(X)$, where $(f, g): Y \rightarrow X \times_{S} X$ is the canonical morphism induced by f and g.

Problem 5. Show that an A-scheme X is separated over a ring A, if and only if X is separated over the integers \mathbb{Z}.

Problem 6. (1) Prove that if R is a ring with $\operatorname{dim} R=0$, then $R=Q(R)$, the ring of fractions of R, i.e., the localization with respect to the set of all non-zero divisors.
(2) Show that if R is reduced, i.e., contains no nilpotents, has only a finite number of minimal prime ideals, and $R=Q(R)$, then $\operatorname{dim} R \leq 0$.
Problem 7. Show that for a point x in a scheme X, the codimension of the closed irreducible set $\overline{\{x\}}$ coincides with the Krull dimension of the stalk $\mathcal{O}_{X, x}$. The codimension of a closed irreducible subset $Y \subseteq X$ is the supremum of the lengths r of chains $Y \subset X_{1} \subset \cdots \subset X_{r}$ of closed irreducible subsets of X that start with Y. Deduce that the dimension of a scheme is the supremum of the Krull dimensions of its stalks. Hint: See Vakil's Exercise 11.1.B. Note also that a nonempty open subset of an irreducible topological space is always dense in it.

