The problem set is due at the beginning of the class on Monday, April 2.
Reading: Class notes. Vakil (11/18/17 version): Sections 10.1.7-E (We looked at algebraic A-schemes in class. A k-variety is just a reduced algebraic k-scheme.), 8.2.6-L, 9.6, 8.2.11-N, 9.3.F, 22.1, 22.3 through 22.3.2, 22.3.4, 22.4.1, 22.4.3. Hartshorne: Exercises I.3.14, I.2.12, I.2.14, I.3.4, I.3.16. II.5.11, Sections I. 4 (pp. 28-29), II. 7 (pp. 163-165). (All the exercises in this part of the assignment are for reference only; you do not have to solve them, unless you are asked to below or want to.)

Problem 1. Let $R=\bigoplus_{m \geq 0} R_{m}$ be a positively graded ring.
(1) Prove the equivalence of the following two conditions: (a) The irrelevant ideal R_{+}is finitely generated; (b) The R_{0}-algebra R is of finite type, i.e., finitely generated as an R_{0}-algebra.
(2) Show that if R is an R_{0}-algebra of finite type, then the d th Veronese subring $R^{[d]}$ is also an R_{0}-algebra of finite type and R is a finite $R^{[d]}$-algebra, i.e., R is finitely generated as an $R^{[d]}$-module.

Problem 2. Show that a projective algebraic A-scheme, i.e., a scheme isomorphic to $\operatorname{Proj} R$ for a positively graded algebra R of finite type over $A=R_{0}$, is actually isomorphic to $\operatorname{Proj} S$, where S is a standardly graded algebra of finite type over S_{0}. A grading is called standard if S is generated by S_{1} as an S_{0}-algebra. Hint: This is actually Vakil's Exercise 6.4.G, which also has a hint. Use the isomorphism $\operatorname{Proj} R \rightarrow \operatorname{Proj} R^{[d]}$ from the previous homework and prove the following statement. Under our assumptions about R, there exists a $d>0$ such that $R^{[d]}$ is generated by R_{d} over R_{0} and thereby could be regraded to a standard grading. This statement may be proven by choosing a set of homogeneous generators x_{0}, \ldots, x_{n} of R of various positive degrees $\gamma_{0}, \ldots, \gamma_{n}$. Then show that for $m=\operatorname{LCM}\left(\gamma_{0}, \ldots, \gamma_{n}\right)$, there is a multiple $d=c m$ of m such that $R^{[d]}$ is generated by R_{d}.

Problem 3. Let $R=\bigoplus_{m \geq 0} R_{m}$ and $S=\bigoplus_{m \geq 0} S_{m}$ be positively graded rings with $A:=R_{0}=S_{0}$. Define the Segre product $R \#_{A} S:=\bigoplus_{m \geq 0} R_{m} \otimes_{A} S_{m}$. Prove that $\operatorname{Proj}\left(R \#_{A} S\right) \cong \operatorname{Proj} R \times{ }_{A} \operatorname{Proj} S$. Hint: This is actually Vakil's Exercise 9.6.D. Show that $\left(R_{f}\right)_{0} \otimes_{A}\left(S_{g}\right)_{0} \cong\left(\left(R \#_{A} S\right)_{f \otimes g}\right)_{0}$ for homogeneous f and g. Perhaps, I should discourage the categorical approach I suggested in class, because the best you can do this way would be to show that $\operatorname{Proj}\left(R \#_{A} S\right)$ is a product in the category of projective A-schemes Proj R. You can still improve the situation by describing morphisms from arbitrary A-schemes to projective A-schemes Proj R in the spirit of how morphisms from schemes to affine schemes are described. But all that is a little project, while a direct argument is simple enough.
Problem 4. Prove that the fibered product (over $\operatorname{Spec} A$) of two projective algebraic A-schemes is a projective algebraic A-scheme.

Problem 5. Vakil's Exercise 8.2.I.
Problem 6. Vakil's Exercise 8.2.J.
Problem 7. Vakil's Exercise 9.6.C.
Problem 8. Vakil's Exercise 9.3.F.

