Math 8254 Homework 5 Posted: 3/23/2018; Added 8.2.11–N to reading: 03/26; Due: Monday, 4/2/2018

The problem set is due at the beginning of the class on Monday, April 2.

Reading: Class notes. Vakil (11/18/17 version): Sections 10.1.7–E (We looked at algebraic A-schemes in class. A k-variety is just a reduced algebraic k-scheme.), 8.2.6–L, 9.6, 8.2.11–N, 9.3.F, 22.1, 22.3 through 22.3.2, 22.3.4, 22.4.1, 22.4.3. Harts-horne: Exercises I.3.14, I.2.12, I.2.14, I.3.4, I.3.16. II.5.11, Sections I.4 (pp. 28–29), II.7 (pp. 163–165). (All the exercises in this part of the assignment are for reference only; you do not have to solve them, unless you are asked to below or want to.)

Problem 1. Let $R = \bigoplus_{m>0} R_m$ be a positively graded ring.

- (1) Prove the equivalence of the following two conditions: (a) The irrelevant ideal R_+ is finitely generated; (b) The R_0 -algebra R is of finite type, *i.e.*, finitely generated as an R_0 -algebra.
- (2) Show that if R is an R_0 -algebra of finite type, then the dth Veronese subring $R^{[d]}$ is also an R_0 -algebra of finite type and R is a finite $R^{[d]}$ -algebra, *i.e.*, R is finitely generated as an $R^{[d]}$ -module.

Problem 2. Show that a projective algebraic A-scheme, i.e., a scheme isomorphic to Proj R for a positively graded algebra R of finite type over $A = R_0$, is actually isomorphic to Proj S, where S is a standardly graded algebra of finite type over S_0 . A grading is called *standard* if S is generated by S_1 as an S_0 -algebra. Hint: This is actually Vakil's Exercise 6.4.G, which also has a hint. Use the isomorphism Proj $R \to \operatorname{Proj} R^{[d]}$ from the previous homework and prove the following statement. Under our assumptions about R, there exists a d > 0 such that $R^{[d]}$ is generated by R_d over R_0 and thereby could be regraded to a standard grading. This statement may be proven by choosing a set of homogeneous generators x_0, \ldots, x_n of R of various positive degrees $\gamma_0, \ldots, \gamma_n$. Then show that for $m = \operatorname{LCM}(\gamma_0, \ldots, \gamma_n)$, there is a multiple d = cm of m such that $R^{[d]}$ is generated by R_d .

Problem 3. Let $R = \bigoplus_{m\geq 0} R_m$ and $S = \bigoplus_{m\geq 0} S_m$ be positively graded rings with $A := R_0 = S_0$. Define the Segre product $R\#_A S := \bigoplus_{m\geq 0} R_m \otimes_A S_m$. Prove that $\operatorname{Proj}(R\#_A S) \cong \operatorname{Proj} R \times_A \operatorname{Proj} S$. Hint: This is actually Vakil's Exercise 9.6.D. Show that $(R_f)_0 \otimes_A (S_g)_0 \cong ((R\#_A S)_{f\otimes g})_0$ for homogeneous f and g. Perhaps, I should discourage the categorical approach I suggested in class, because the best you can do this way would be to show that $\operatorname{Proj}(R\#_A S)$ is a product in the category of projective A-schemes $\operatorname{Proj} R$. You can still improve the situation by describing morphisms from arbitrary A-schemes to projective A-schemes $\operatorname{Proj} R$ in the spirit of how morphisms from schemes to affine schemes are described. But all that is a little project, while a direct argument is simple enough.

Problem 4. Prove that the fibered product (over Spec A) of two projective algebraic A-schemes is a projective algebraic A-scheme.

Problem 5. Vakil's Exercise 8.2.I.

Problem 6. Vakil's Exercise 8.2.J.

Problem 7. Vakil's Exercise 9.6.C.

Problem 8. Vakil's Exercise 9.3.F.