The problem set is due at the beginning of the class on Wednesday, April 18.
Reading: Class notes. Vakil (11/18/17 version): Sections 9.3.F, 22.1, 22.3 through $22.3 .2,22.3 .4,22.4 .1,22.4 .3,19.9 .10$ (p. 531; ignore the sheaves $\mathrm{O}(\mathrm{D})$), 15.1-2, 15.3.1, 15.4 through 15.4.D, 15.4.2-3, 18.2 through 18.2.B. Hartshorne: Sections I. 4 (pp. 28-29), II. 7 (pp. 163-165), Example II.6.10.2 (p. 139; ignore the divisors), II. 5 (pp. 116-119), III. 4 through Lemma 4.1.

Problem 1. Let A be a ring and $\mathfrak{a} \triangleleft A$ an ideal in it. Consider the corresponding closed affine subscheme $Z=\operatorname{Spec} A / \mathfrak{a}$ in $X=\operatorname{Spec} A$. Let $\mathrm{Bl}_{Z}(X)=\operatorname{Proj} A[\mathfrak{a} T]$, where $A[\mathfrak{a} T]=A \oplus \mathfrak{a} T \oplus \mathfrak{a}^{2} T^{2} \oplus \ldots$ is graded by $\operatorname{deg} T=1$, be the blowup of X along Z. The point of this problem to show that the exceptional divisor, i.e., the scheme-theoretic preimage $E_{Z}(Z):=Z \times_{X} \mathrm{Bl}_{Z}(X)$ of Z with respect to the canonical projection $\mathrm{Bl}_{Z}(X) \rightarrow X$ is indeed what is called an effective Cartier divisor, i.e., a closed subscheme whose sheaf of ideals is locally generated by a non-zero divisor. An effective Cartier divisor will automatically be a subscheme of codimension one. We have seen in class that $E_{Z}(X)=\operatorname{Proj} A[\mathfrak{a} T] / \mathfrak{a} A[\mathfrak{a} T]$, where $A[\mathfrak{a} T] / \mathfrak{a} A[\mathfrak{a} T]=\bigoplus_{m \geq 0}\left(\mathfrak{a}^{m} / \mathfrak{a}^{m+1}\right) T^{m}$. Divide the proof into the following three steps.
(1) For each $a \in \mathfrak{a}$, identify the algebra $\left(A[\mathfrak{a} T]_{a T}\right)_{0}$ of global functions on the affine open subset $D_{+}(a T)=\operatorname{Spec}\left(A[\mathfrak{a} T]_{a T}\right)_{0}$ of $\mathrm{Bl}_{Z}(X)$ as the subalgebra $A\left[a^{-1} \mathfrak{a}\right]=A+a^{-1} \mathfrak{a}+a^{-2} \mathfrak{a}^{2}+\ldots$ of A_{a}.
(2) Identify the quotient algebra $\left((A[\mathfrak{a} T] / \mathfrak{a} A[\mathfrak{a} T])_{a T}\right)_{0}$ of global functions on the affine open subset $\operatorname{Spec}\left((A[\mathfrak{a} T] / \mathfrak{a} A[\mathfrak{a} T])_{a T}\right)_{0}$ of $E_{Z}(X)$ as the quotient $A\left[a^{-1} \mathfrak{a}\right] / a A\left[a^{-1} \mathfrak{a}\right]$ of the algebra $A\left[a^{-1} \mathfrak{a}\right]$. This implies that the closed subscheme $E_{Z}(X) \subseteq \mathrm{Bl}_{Z}(X)$ is determined within the open subset $D_{+}(a T) \subseteq \operatorname{Proj} A[\mathfrak{a} T]$ by the principal ideal $(a) \triangleleft A\left[a^{-1} \mathfrak{a}\right]$.
(3) Conclude by observing that a is a unit in the extension A_{a} of $A\left[a^{-1} \mathfrak{a}\right]$ and that the affine open subsets $D_{+}(a T)$ cover $\mathrm{Bl}_{Z}(X)$.
Problem 2. Within the setup of the previous problem, show that the quasicoherent sheaf $\mathcal{O}_{\mathrm{Bl}_{Z}(X)}(1)$ is isomorphic to the sheaf $\mathfrak{a} A[\mathfrak{a} T] \sim$ associated with the graded ideal $\mathfrak{a} A[\mathfrak{a} T] \triangleleft A[\mathfrak{a} T]$ defining the exceptional divisor $E_{Z}(X)$.

Problem 3. Let $R=\bigoplus_{m \geq 0} R_{m}$ be a positively graded ring and $M=\bigoplus_{m \in \mathbb{Z}} M_{m}$ and $N=\bigoplus_{m \in \mathbb{Z}} N_{m}$ be two graded R-modules. Let $M \otimes_{R} N$ be their tensor product over R with obvious grading.
(1) Construct a sheaf morphism $\widetilde{M} \otimes_{\mathcal{O}_{X}} \widetilde{N} \rightarrow\left(M \otimes_{R} N\right)^{\sim}$. Hint: It is just enough to construct canonical homomorphisms $\left(M_{f}\right)_{0} \otimes_{\left(R_{f}\right)_{0}}\left(N_{f}\right)_{0} \rightarrow$ $\left(M_{f} \otimes_{R_{f}} N_{f}\right)_{0}=\left(\left(M \otimes_{R} N\right)_{f}\right)_{0}$.
(2) Show that the sheaf morphism from the previous part is an isomorphism if R is standardly graded. In particular, $\widetilde{M} \otimes \mathcal{O}_{X} \mathcal{O}_{X}(n) \xrightarrow{\sim} \widetilde{M(n)}$.
(3) Give an example of R such that $\mathcal{O}_{X}(1) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{X}(2)$ is not an isomorphism.

Problem 4. Let $\mathbb{P}_{A}^{n}=\operatorname{Proj} A\left[X_{0}, \ldots, X_{n}\right]$ be the projective n-space over a ring A. We know from Homework 4 that given a homogeneous ideal $\mathfrak{a} \triangleleft A\left[X_{0}, \ldots, X_{n}\right]$, the projection

$$
A\left[X_{0}, \ldots, X_{n}\right] \rightarrow A\left[X_{0}, \ldots, X_{n}\right] / \mathfrak{a}
$$

onto the quotient graded A-algebra $A\left[X_{0}, \ldots, X_{n}\right] / \mathfrak{a}$ gives rise to a close embedding of A-schemes
$\operatorname{Proj} A\left[X_{0}, \ldots, X_{n}\right] / \mathfrak{a} \rightarrow \operatorname{Proj} A\left[X_{0}, \ldots, X_{n}\right]$.
Prove that every closed embedding $Z \hookrightarrow \mathbb{P}_{A}^{n}$ of A-schemes is of this type. Hint: Use the Serre isomorphism $\Gamma_{*}(\mathcal{F})^{\sim} \rightarrow \mathcal{F}$. See more in Vakil 15.4.H.
Problem 5. Glue two copies of the affine line $\mathbb{A}_{k}^{1}=\operatorname{Spec} k[T]$ over a field k via the k-algebra isomorphism $k\left[T, T^{-1}\right] \rightarrow k\left[T, T^{-1}\right]$ given by (1) $T \mapsto T$; (2) $T \mapsto T^{-1}$. The resulting k-scheme X comes with an open cover \mathcal{U} consisting of two affine lines and is (1) the affine line $\overline{\mathbb{A}}_{k}^{1}$ with a doubled point and, respectively, (2) the projective line \mathbb{P}_{k}^{1}. Compute the Čech cohomology groups $H^{q}\left(\mathcal{U}, \mathcal{O}_{X}\right), q \geq 0$, in both cases.

