Math 8254 Homework 6 Posted: 4/8/2018; Minor error in #1 corrected: 7/13/18; Due: Wednesday, 4/18/2018

The problem set is due at the beginning of the class on Wednesday, April 18.

Reading: Class notes. Vakil (11/18/17 version): Sections 9.3.F, 22.1, 22.3 through 22.3.2, 22.3.4, 22.4.1, 22.4.3, 19.9.10 (p. 531; ignore the sheaves O(D)), 15.1-2, 15.3.1, 15.4 through 15.4.D, 15.4.2-3, 18.2 through 18.2.B. **Hartshorne**: Sections I.4 (pp. 28–29), II.7 (pp. 163–165), Example II.6.10.2 (p. 139; ignore the divisors), II.5 (pp. 116–119), III.4 through Lemma 4.1.

Problem 1. Let A be a ring and $\mathfrak{a} \triangleleft A$ an ideal in it. Consider the corresponding closed affine subscheme $Z = \operatorname{Spec} A/\mathfrak{a}$ in $X = \operatorname{Spec} A$. Let $\operatorname{Bl}_Z(X) = \operatorname{Proj} A[\mathfrak{a}T]$, where $A[\mathfrak{a}T] = A \oplus \mathfrak{a}T \oplus \mathfrak{a}^2 T^2 \oplus \ldots$ is graded by deg T = 1, be the blowup of X along Z. The point of this problem to show that the *exceptional divisor*, *i.e.*, the scheme-theoretic preimage $E_Z(Z) := Z \times_X \operatorname{Bl}_Z(X)$ of Z with respect to the canonical projection $\operatorname{Bl}_Z(X) \to X$ is indeed what is called an *effective Cartier divisor*, *i.e.*, a closed subscheme whose sheaf of ideals is locally generated by a non-zero divisor. An effective Cartier divisor will automatically be a subscheme of codimension one. We have seen in class that $E_Z(X) = \operatorname{Proj} A[\mathfrak{a}T]/\mathfrak{a}A[\mathfrak{a}T]$, where $A[\mathfrak{a}T]/\mathfrak{a}A[\mathfrak{a}T] = \bigoplus_{m \ge 0} (\mathfrak{a}^m/\mathfrak{a}^{m+1})T^m$. Divide the proof into the following three steps.

- (1) For each $a \in \mathfrak{a}$, identify the algebra $(A[\mathfrak{a}T]_{aT})_0$ of global functions on the affine open subset $D_+(aT) = \operatorname{Spec}(A[\mathfrak{a}T]_{aT})_0$ of $\operatorname{Bl}_Z(X)$ as the subalgebra $A[a^{-1}\mathfrak{a}] = A + a^{-1}\mathfrak{a} + a^{-2}\mathfrak{a}^2 + \dots$ of A_a .
- (2) Identify the quotient algebra $((A[\mathfrak{a}T]/\mathfrak{a}A[\mathfrak{a}T])_{aT})_0$ of global functions on the affine open subset $\operatorname{Spec}((A[\mathfrak{a}T]/\mathfrak{a}A[\mathfrak{a}T])_{aT})_0$ of $E_Z(X)$ as the quotient $A[a^{-1}\mathfrak{a}]/aA[a^{-1}\mathfrak{a}]$ of the algebra $A[a^{-1}\mathfrak{a}]$. This implies that the closed subscheme $E_Z(X) \subseteq \operatorname{Bl}_Z(X)$ is determined within the open subset $D_+(aT) \subseteq \operatorname{Proj} A[\mathfrak{a}T]$ by the principal ideal $(a) \triangleleft A[a^{-1}\mathfrak{a}]$.
- (3) Conclude by observing that a is a unit in the extension A_a of $A[a^{-1}\mathfrak{a}]$ and that the affine open subsets $D_+(aT)$ cover $\operatorname{Bl}_Z(X)$.

Problem 2. Within the setup of the previous problem, show that the quasicoherent sheaf $\mathcal{O}_{\mathrm{Bl}_Z(X)}(1)$ is isomorphic to the sheaf $\mathfrak{a}A[\mathfrak{a}T]^{\sim}$ associated with the graded ideal $\mathfrak{a}A[\mathfrak{a}T] \triangleleft A[\mathfrak{a}T]$ defining the exceptional divisor $E_Z(X)$.

Problem 3. Let $R = \bigoplus_{m \ge 0} R_m$ be a positively graded ring and $M = \bigoplus_{m \in \mathbb{Z}} M_m$ and $N = \bigoplus_{m \in \mathbb{Z}} N_m$ be two graded *R*-modules. Let $M \otimes_R N$ be their tensor product over *R* with obvious grading.

- (1) Construct a sheaf morphism $\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \to (M \otimes_R N)^{\sim}$. *Hint*: It is just enough to construct canonical homomorphisms $(M_f)_0 \otimes_{(R_f)_0} (N_f)_0 \to (M_f \otimes_{R_f} N_f)_0 = ((M \otimes_R N)_f)_0$.
- (2) Show that the sheaf morphism from the previous part is an isomorphism if R is standardly graded. In particular, $\widetilde{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) \xrightarrow{\sim} \widetilde{M(n)}$.
- (3) Give an example of R such that $\mathcal{O}_X(1) \otimes_{\mathcal{O}_X} \mathcal{O}_X(1) \to \mathcal{O}_X(2)$ is not an isomorphism.

Problem 4. Let $\mathbb{P}^n_A = \operatorname{Proj} A[X_0, \ldots, X_n]$ be the projective *n*-space over a ring *A*. We know from Homework 4 that given a homogeneous ideal $\mathfrak{a} \triangleleft A[X_0, \ldots, X_n]$, the projection

$$A[X_0,\ldots,X_n] \to A[X_0,\ldots,X_n]/\mathfrak{a}$$

onto the quotient graded A-algebra $A[X_0, \ldots, X_n]/\mathfrak{a}$ gives rise to a close embedding of A-schemes

 $\operatorname{Proj} A[X_0, \ldots, X_n]/\mathfrak{a} \to \operatorname{Proj} A[X_0, \ldots, X_n].$

Prove that every closed embedding $Z \hookrightarrow \mathbb{P}^n_A$ of A-schemes is of this type. *Hint*: Use the Serre isomorphism $\Gamma_*(\mathcal{F})^{\sim} \to \mathcal{F}$. See more in Vakil 15.4.H.

Problem 5. Glue two copies of the affine line $\mathbb{A}_k^1 = \operatorname{Spec} k[T]$ over a field k via the k-algebra isomorphism $k[T, T^{-1}] \to k[T, T^{-1}]$ given by (1) $T \mapsto T$; (2) $T \mapsto T^{-1}$. The resulting k-scheme X comes with an open cover \mathcal{U} consisting of two affine lines and is (1) the affine line $\overline{\mathbb{A}}_k^1$ with a doubled point and, respectively, (2) the projective line \mathbb{P}_k^1 . Compute the Čech cohomology groups $H^q(\mathcal{U}, \mathcal{O}_X), q \ge 0$, in both cases.