MATH 8254: ALGEBRAIC GEOMETRY PROBLEM SET 2, DUE MONDAY, MARCH 3, 2008

SASHA VORONOV

From Hartshorne's textbook: II.5.11, II.7.8.

- **Problem 1.** (1) Let $S = \bigoplus_{n=0}^{\infty} S_n$ be a graded ring and $R = S_0$. Suppose $\phi: R \to A$ is a ring homomorphism and let $T = S \otimes_R A$ be the graded ring induced by the base change. Prove that $\operatorname{Proj} T \cong \operatorname{Proj} S \times_{\operatorname{Spec} R} \operatorname{Spec} A$.
 - (2) Let $S = \bigoplus_{n=0}^{\infty} S_n$ be a quasi-coherent graded \mathcal{O}_X -algebra over a scheme X. Let $f^*S = \bigoplus_{n=0}^{\infty} f^*S_n$ be the inverse image under a scheme morphism $f: Y \to X$. Prove that $\operatorname{Proj} f^*S \cong \operatorname{Proj} S \times_X Y$.

Problem 2. For a quasi-coherent sheaf \mathcal{E} and an invertible sheaf \mathcal{L} over a scheme X, prove that $\mathbb{P}(\mathcal{E})$ and $\mathbb{P}(\mathcal{E} \otimes \mathcal{L})$ are isomorphic schemes over X.

Problem 3. Let $f: Y \to X$ be a relative scheme. For an *f*-very ample sheaf \mathcal{L} on Y, prove that for each integer n > 0, the sheaf $\mathcal{L}^{\otimes n}$ is also *f*-very ample.

Date: February 24, 2008.