MATH 8254: ALGEBRAIC GEOMETRY PROBLEM SET 2, DUE MONDAY, MARCH 3, 2008

SASHA VORONOV

From Hartshorne's textbook: II.5.11, II.7.8.
Problem 1. (1) Let $S=\bigoplus_{n=0}^{\infty} S_{n}$ be a graded ring and $R=S_{0}$. Suppose $\phi: R \rightarrow A$ is a ring homomorphism and let $T=S \otimes_{R} A$ be the graded ring induced by the base change. Prove that $\operatorname{Proj} T \cong \operatorname{Proj} S \times_{\text {Spec } R} \operatorname{Spec} A$.
(2) Let $\mathcal{S}=\bigoplus_{n=0}^{\infty} \mathcal{S}_{n}$ be a quasi-coherent graded \mathcal{O}_{X}-algebra over a scheme X. Let $f^{*} \mathcal{S}=\bigoplus_{n=0}^{\infty} f^{*} \mathcal{S}_{n}$ be the inverse image under a scheme morphism $f: Y \rightarrow X$. Prove that $\operatorname{Proj} f^{*} \mathcal{S} \cong \operatorname{Proj} \mathcal{S} \times_{X} Y$.
Problem 2. For a quasi-coherent sheaf \mathcal{E} and an invertible sheaf \mathcal{L} over a scheme X, prove that $\mathbb{P}(\mathcal{E})$ and $\mathbb{P}(\mathcal{E} \otimes \mathcal{L})$ are isomorphic schemes over X.

Problem 3. Let $f: Y \rightarrow X$ be a relative scheme. For an f-very ample sheaf \mathcal{L} on Y, prove that for each integer $n>0$, the sheaf $\mathcal{L}^{\otimes n}$ is also f-very ample.

