MATH 8254: ALGEBRAIC GEOMETRY PROBLEM SET 3, DUE MONDAY, MARCH 24, 2008

SASHA VORONOV

Problem 1 (Diagram Chase practice). Complete the diagram chase I briefly indicated in class to construct a homomorphism between the $H^1(B^{\bullet}, d)$ and $H^1(A^{\bullet}, \delta)$, where $B^{\bullet} = \Gamma(X, C^{\bullet}(\mathcal{F}))$ and $A^{\bullet} = \Gamma(X, \mathcal{G}^{\bullet})$, $(C^{\bullet}(\mathcal{F}), d)$ being the canonical flabby resolution of \mathcal{F} and $(\mathcal{G}^{\bullet}, \delta)$ being a given flabby resolution of \mathcal{F} . That is to say, construct a well-defined map $f: \operatorname{Ker} d^1/\operatorname{Im} d^0 \to \operatorname{Ker} \delta^1/\operatorname{Im} \delta^0$, track all the ambiguities you make using the diagram choice to see that they will all result in a unique map to the quotient group $\operatorname{Ker} \delta^1/\operatorname{Im} \delta^0$, use this to see that you get a unique group homomorphism and that the homomorphism $g: \operatorname{Ker} \delta^1/\operatorname{Im} \delta^0 \to \operatorname{Ker} d^1/\operatorname{Im} d^0$ which you construct similarly is an inverse of f.

Problem 2 (Compare to H: Lemma III.2.10). Let Y be a closed subspace of a topological space X and $i: Y \to X$ be the natural inclusion map. For a flabby sheaf \mathcal{F} on Y, prove that $i_*\mathcal{F}$ is a flabby sheaf on X.

Problem 3 (Compare to H: Theorem III.1.1A (c)). Complete the proof of the Long Exact Sequence Theorem in class: If

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

is an exact sequence of sheaves, then there is a long exact sequence of cohomology, as follows:

$$0 \to H^0(X,\mathcal{F}) \to H^0(X,\mathcal{G}) \to H^0(X,\mathcal{H}) \to$$

$$\to H^1(X,\mathcal{F}) \to H^1(X,\mathcal{G}) \to H^1(X,\mathcal{H}) \to$$

$$\to H^2(X,\mathcal{F}) \to H^2(X,\mathcal{G}) \to H^2(X,\mathcal{H}) \to \dots$$

Problem 4. For sheaves \mathcal{F} and \mathcal{G} of \mathcal{O}_X -modules on a separated scheme X, define a pairing

$$H^p(X,\mathcal{F})\otimes H^q(X,\mathcal{G})\to H^{p+q}(X,\mathcal{F}\otimes\mathcal{G})$$

using Cech cohomology.

Problem 5 (Compare to H: Exercise III.4.5). For a scheme X, let $\operatorname{Pic} X$ be the group of isomorphism classes of invertible shaves, called the *Picard group*. Show that $\operatorname{Pic} X \cong \check{H}^1(X, \mathcal{O}_X^*)$, where \mathcal{O}_X^* denotes the sheaf whose sections over an open set U are the units of the ring $\Gamma(U, \mathcal{O}_X)$, with multiplication as the group operation. Note that the group structure on the cohomology group $\check{H}^1(U, \mathcal{O}_X^*)$ induced by an open covering $U = \{U_i \mid i \in I\}$ of X is defined by $\{f_{ij}\} \cdot \{g_{ij}\} := \{f_{ij} \cdot g_{ij}\}$ for cochains $\{f_{ij}\}$ and $\{g_{ij}\}$. The group structure on $\check{H}^1(X, \mathcal{O}_X^*)$ is then induced by inductive limit.

Date: March 9, 2008.

Problem 6. Hartshorne: III.4.3.

Problem 7. Hartshorne: III.4.7.