MATH 8254: ALGEBRAIC GEOMETRY PROBLEM SET 5, DUE FRIDAY, MAY 9, 2008

SASHA VORONOV

Problem 1. Hartshorne: II.6.1.
Problem 2. Hartshorne: III.7.3.
Problem 3. Let X be the complete nonsingular algebraic curve over an algebraically closed ground field k of characteristic char $k \neq 2$ pasted from two nonsingular affine curves as follows. The first curve is given by the equation

$$
y^{2}=f(x)
$$

in the $x y$ plane, with the right-hand side

$$
f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}
$$

having d pairwise distinct roots $\alpha_{1}, \ldots, \alpha_{d}$. The second curve is defined by the equation

$$
v^{2}=u^{2 m} f\left(\frac{1}{u}\right)
$$

in the $u v$ plane, where m is such that $d=2 m$ or $2 m-1$. These two affine curves are pasted together via $x=\frac{1}{u}$ and $y=\frac{v}{u^{m}}$. Note that this is not the curve given by the equation $y^{2}=f(x)$ in \mathbb{P}_{k}^{2}, which was the one we talked about in class.
(1) Show that $g(X)=m-1$. [Hint: This is what we actually did in class on Friday, May 2. Consider the rational form $\omega=\frac{d x}{y}$ and show it is regular and has two zeros of order $m-2$ each, if $d=2 m$, and one zero of order $2 m-4$, if $d=2 m-1$. Then recall that, for the corresponding divisor (ω), we have a formula for its degree: $\operatorname{deg}(\omega)=2 g-2$.]
(2) Show that $\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{m-2} d x}{y}$ form a basis of the space $H^{0}\left(X, \Omega_{X / k}^{1}\right)$ of regular 1-forms on X. [Hint: As in (1), show that each of these forms is regular. Thus, we have gotten $m-1$ linearly independent regular 1-forms on X.]
Problem 4. If a divisor D on a complete nonsingular algebraic curve C satisfies $\operatorname{deg} D<0$, prove that $H^{0}\left(C, \mathcal{O}_{C}(D)\right)=0$.
Problem 5. For a complete nonsingular algebraic curve C over a field $k, k=\bar{k}$, and a closed point $P \in C$, put

$$
A(P) ;=H^{0}\left(C, \mathcal{O}_{C}(* P)\right):=\{f \in k(C) \mid f \text { is regular on } C\{P\}\}
$$

Show that $C \backslash\{P\} \cong \operatorname{Spec} A(P)$.

