MATH 8254: ALGEBRAIC GEOMETRY PROBLEM SET 5, DUE FRIDAY, MAY 9, 2008

SASHA VORONOV

Problem 1. Hartshorne: II.6.1.

Problem 2. Hartshorne: III.7.3.

Problem 3. Let X be the complete nonsingular algebraic curve over an algebraically closed ground field k of characteristic char $k \neq 2$ pasted from two nonsingular affine curves as follows. The first curve is given by the equation

$$y^2 = f(x)$$

in the xy plane, with the right-hand side

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0$$

having d pairwise distinct roots $\alpha_1, \ldots, \alpha_d$. The second curve is defined by the equation

$$v^2 = u^{2m} f\left(\frac{1}{u}\right)$$

in the uv plane, where m is such that d = 2m or 2m - 1. These two affine curves are pasted together via $x = \frac{1}{u}$ and $y = \frac{v}{u^m}$. Note that this is not the curve given by the equation $y^2 = f(x)$ in \mathbb{P}^2_k , which was the one we talked about in class.

- (1) Show that g(X) = m 1. [Hint: This is what we actually did in class on Friday, May 2. Consider the rational form $\omega = \frac{dx}{y}$ and show it is regular and has two zeros of order m 2 each, if d = 2m, and one zero of order 2m 4, if d = 2m 1. Then recall that, for the corresponding divisor (ω) , we have a formula for its degree: $\deg(\omega) = 2g 2$.]
- we have a formula for its degree: deg(ω) = 2g 2.]
 (2) Show that dx/y, xdx/y,..., x^{m-2}dx/y form a basis of the space H⁰(X, Ω¹_{X/k}) of regular 1-forms on X. [Hint: As in (1), show that each of these forms is regular. Thus, we have gotten m 1 linearly independent regular 1-forms on X.]

Problem 4. If a divisor D on a complete nonsingular algebraic curve C satisfies deg D < 0, prove that $H^0(C, \mathcal{O}_C(D)) = 0$.

Problem 5. For a complete nonsingular algebraic curve C over a field $k, k = \bar{k}$, and a closed point $P \in C$, put

 $A(P); = H^0(C, \mathcal{O}_C(*P)) := \{ f \in k(C) \mid f \text{ is regular on } C\{P\} \}.$ Show that $C \setminus \{P\} \cong \operatorname{Spec} A(P).$

Date: May 3, 2008.