MATH 8254: ALGEBRAIC GEOMETRY
WEIL DIVISORS, RATIONAL FUNCTIONS AND LINE
BUNDLES

INSTRUCTOR: SASHA VORONOV

1. GLOBAL AND LOCAL RATIONAL FUNCTIONS

The matter is that rational functions near a point of a scheme X are
defined as quotients of regular functions, while global rational functions
on X are defined as just as regular functions on dense open subsets.
For some reason, Vakil and Hartshorne sweep the following statement
under the rug.

Let X be a reduced Noetherian scheme of pure dimension n, regular
in codimension 1 and

K(X)= lm  Ox(0)
Dense open U C X

be the ring of rational functions on X. In other words, a rational func-
tion is a regular function on a dense open U C X, and two rational
functions are equivalent, if they agree on the intersection of their do-
mains. A scheme X is reduced if for each open U C X, Ox(U) is a
reduced ring, i.e., contains no nonzero nilpotents. I did not require
this in class, which is okay, but things will become more cumbersome
without it. For example, instead of saying ¢ is not the zero function on
each irreducible component of X in the lemma below, we would have
to say there is at least one point p in each irreducible component at
which ¢ is not zero in the fiber Ox|, = Ox,/pOx .

Proposition 1. Let p € X be a point of codimension 1. Then there is
a natural ring homomorphism K(X) — K(Ox,).

Proof. By choosing an irreducible component of X containing the point
p, we may assume WLOG that X is irreducible, which is something
I missed in class on Friday. In fact, the regularity of X in codi-
mension 1 implies that p lies in a unique irreducible component of X:
this is because the stalk Oy, is an integral domain.

Choose an affine open neighborhood U, = Spec A C X of p.
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Suppose we are given ¢ € K(X) defined as a regular function ¢ €
Ox (U) on an open dense subset U C X. Since UNU,, # &, we may find
a point ¢ € UNU, and an open neighborhood U, C UNU, of ¢ on which
@ = f/g, where f,g € A and g ¢ x for each x € U, C Spec A. Note
that, while f/g is defined only on U, the regular functions f and g are
defined everywhere on U,. We claim that f/g is defined in the fraction
field K(A,) as f,/g,. For that, we just need to know that g, # 0 in the
stalk Ox, = A,, which is an integral domain, because of the regularity
in codimension 1 assumption. Suppose g, = 0. Since g, is the germ of
g € O(U,) = A, we have g = 0 in an open neighborhood V,, of p. Since
X is irreducible, V), is dense in it and V,NU, # &. Thus, g = 0 there,
which contradicts the fact that g € « for each = € U,,.

So, we define the homomorphism K (X) — K(Ox,) as

© = [/ 9p-

It is not hard to see that it will be a homomorphism, provided we show
it is independent of the choice of a point ¢ and presentation ¢ = f/g
near it we have chosen. If we choose another point ¢, neighborhood
Uy, and presentation ¢ = f’/¢’, we again know that U, N U, # @ and
there f'/g" = f/g. Therefore f//g, = f,/gp, and we are done. O

2. PRINCIPAL DIVISORS AND GENERIC POINTS

The above statement allows us to define the valuation v,(p) for a
codimension-one point p € X and a rational function ¢ which is not the
zero function on any irreducible component of X by taking the image
of ¢ in K(Ox,) and then using the valuation v, : K(Ox,)* — Z.
We want to connect such p € X with a closed subset of Y C X of
codimension one. It is going to be Y = m, but we’d rather need the
converse of this construction.

A primer on the generic point of an irreducible closed Y C X: For
X = Spec A, every point p € X (i.e., a prime ideal of A) gives rise to
an irreducible closed subset,

{gespecAlqopt=Vp)=V(J9S) =V ={p}

SCp SCp

Thus every point of an affine scheme is present in two incarnations: as
a point p and as an irreducible closed subset V' (p), related by closure:
{p} = V(p). Conversely, every irreducible closed subset is of the form
V(p), where p is a prime ideal of A, i.e., a point of Spec A. The idea of
a generic point is that in this case we say that p is the generic point of
V(p). This construction generalizes to arbitrary schemes, as follows.
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We claim that every irreducible closed subset Y of a scheme X has
a unique point n € Y dense in Y: {n} =Y, called the generic point
of Y. Pick an affine open U C X such that U NY # & and let n be
the generic point of U NY. Then, since U NY is dense in Y, eta will
be a generic point of Y as well. On the other hand, any other generic
point i’ of Y will also be dense in U N'Y and thereby equal to n, as
V(1) = V(n) implies " = n by the Nullstellensatz for affine schemes.

Then for an irreducible closed subset Y C X of codimension 1, we
define

vy () 1= Un(ﬁp)‘
Now, a principal divisor is the divisor of a rational function

divo:= Y oy(9)Y]

irred. YCX
codimY=1

Principal divisors form a subgroup Prin X of the group Weil X of Weil
divisiors.

Lemma 2. This is a finite sum.

Proof. 1t is enough to show finiteness for each irreducible component
of X, which means we can assume X is irreducible.

Let U = Spec A be an affine open subset on which ¢ is regular and
therefore p € A, ¢ #0. Then Z := X \ U is a proper closed subset of
X. Therefore, it contains a finite number of irreducible divisors. This
is because if Z is of codimension 0, it must be the whole X, which could
not be the case when Z is proper. If codim Z = 1, then an irreducible
divisor of X contained in Z must be an irreducible component of Z, of
which there are finitely many. If codim Z > 1, then it is too small to
contain an irreducible divisor of codimension 1.

Thus, every other divisor will intersect U = Spec A nontrivially, and
it is enough to show that there are finitely many divisors Y C U of
the Noetherian scheme U for which vy (¢) # 0. This actually means
vy () > 0, because ¢ is regular on U. So, we are again talking about
irreducible divisors contained in the proper closed set V() C U, as
A is reduced and ¢ # 0 cannot be contained in all prime ideals. The
same argument as for Z above shows that U contains finitely many
irreducible divisors. U

3. LINE BUNDLES AND WEIL DIVISORS

Now, suppose s is a rational section of a line bundle £ on X (i.e., s
is a regular section on a dense open subset, with a similar equivalence
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relation as for rational functions) and s is not the zero section on
any irreducible component of X, which is something I forgot to
mention in class. Then, for each irreducible closed Y C X, codimY =
1, we can trivialize £ in a neighborhood U of the generic point of Y:
Lly = Ox|y. Then regular sections of £ on open subsets of U will
be identified with regular functions with same domain, and hence, our
rational section s will be identified with a rational function on U. This
allows us to define the valuation of s at Y as above. It is independent
of the choice of trivialization, because any two trivializations differ by
an invertible function, whose valuation is zero.

Then the divisor of the rational section s is

divs := Z vy (8)[Y].

irregL YCX
codimY=1

The proof of the lemma above generalizes to show that this sum is
finite.

The set of isomorphism classes of such pairs (£, s) forms a group with
respect to ® and (£,s)”! = (£Y,s7!), s7! being a rational section of
LY such that s7!(s) = 1 under evaluation £Y @ £ = Ox. We have a
group homomorphism

{(L, s)}/isomorphism — Weil X,

(L, s) — divs,
where
Weil X = { Z nyY] | n, € Z,ny =0 for almost all Y'}
irred. Y’
codimY =1

is the group of Weil divisors with respect to addition. Since two rational
sections s and s of L differ by a rational function factor: s = ¢s
(since L ® L71 = Ox), and vy (s') = vy(p) + vy (s), we also have a
homomorphism

{L} /isomorphism — Cl X

where C1 X := Weil X/ Prin X.
The point of these is that these homomorphisms are isomorphisms
in good enough situations.



