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WEIL DIVISORS, RATIONAL FUNCTIONS AND LINE

BUNDLES

INSTRUCTOR: SASHA VORONOV

1. Global and local rational functions

The matter is that rational functions near a point of a scheme X are
defined as quotients of regular functions, while global rational functions
on X are defined as just as regular functions on dense open subsets.
For some reason, Vakil and Hartshorne sweep the following statement
under the rug.

Let X be a reduced Noetherian scheme of pure dimension n, regular
in codimension 1 and

K(X) = lim−→
Dense open U ⊂ X

OX(U)

be the ring of rational functions on X. In other words, a rational func-
tion is a regular function on a dense open U ⊂ X, and two rational
functions are equivalent, if they agree on the intersection of their do-
mains. A scheme X is reduced if for each open U ⊂ X, OX(U) is a
reduced ring, i.e., contains no nonzero nilpotents. I did not require
this in class, which is okay, but things will become more cumbersome
without it. For example, instead of saying φ is not the zero function on
each irreducible component of X in the lemma below, we would have
to say there is at least one point p in each irreducible component at
which φ is not zero in the fiber OX |p = OX,p/pOX,p.

Proposition 1. Let p ∈ X be a point of codimension 1. Then there is
a natural ring homomorphism K(X) → K(OX,p).

Proof. By choosing an irreducible component of X containing the point
p, we may assumeWLOG thatX is irreducible, which is something
I missed in class on Friday. In fact, the regularity of X in codi-
mension 1 implies that p lies in a unique irreducible component of X:
this is because the stalk OX,p is an integral domain.

Choose an affine open neighborhood Up
∼= SpecA ⊂ X of p.
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Suppose we are given φ ∈ K(X) defined as a regular function φ ∈
OX(U) on an open dense subset U ⊂ X. Since U∩Up ̸= ∅, we may find
a point q ∈ U∩Up and an open neighborhood Uq ⊂ U∩Up of q on which
φ = f/g, where f, g ∈ A and g ̸∈ x for each x ∈ Uq ⊂ SpecA. Note
that, while f/g is defined only on Uq, the regular functions f and g are
defined everywhere on Up. We claim that f/g is defined in the fraction
field K(Ap) as fp/gp. For that, we just need to know that gp ̸= 0 in the
stalk OX,p = Ap, which is an integral domain, because of the regularity
in codimension 1 assumption. Suppose gp = 0. Since gp is the germ of
g ∈ O(Up) = A, we have g = 0 in an open neighborhood Vp of p. Since
X is irreducible, Vp is dense in it and Vp∩Uq ̸= ∅. Thus, g = 0 there,
which contradicts the fact that g ̸∈ x for each x ∈ Uq.

So, we define the homomorphism K(X) → K(OX,p) as

φ 7→ fp/gp.

It is not hard to see that it will be a homomorphism, provided we show
it is independent of the choice of a point q and presentation φ = f/g
near it we have chosen. If we choose another point q′, neighborhood
Uq′ , and presentation φ = f ′/g′, we again know that Uq ∩ Uq′ ̸= ∅ and
there f ′/g′ = f/g. Therefore f ′

p/g
′
p = fp/gp, and we are done. □

2. Principal divisors and generic points

The above statement allows us to define the valuation vp(φ) for a
codimension-one point p ∈ X and a rational function φ which is not the
zero function on any irreducible component of X by taking the image
of φ in K(OX,p) and then using the valuation vp : K(OX,p)

× → Z.
We want to connect such p ∈ X with a closed subset of Y ⊂ X of
codimension one. It is going to be Y = {p}, but we’d rather need the
converse of this construction.

A primer on the generic point of an irreducible closed Y ⊂ X: For
X = SpecA, every point p ∈ X (i.e., a prime ideal of A) gives rise to
an irreducible closed subset,

{q ∈ SpecA | q ⊃ p} = V (p) = V (
⋃
S⊂p

S) =
⋂
S⊂p

V (S) = {p}.

Thus every point of an affine scheme is present in two incarnations: as
a point p and as an irreducible closed subset V (p), related by closure:

{p} = V (p). Conversely, every irreducible closed subset is of the form
V (p), where p is a prime ideal of A, i.e., a point of SpecA. The idea of
a generic point is that in this case we say that p is the generic point of
V (p). This construction generalizes to arbitrary schemes, as follows.
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We claim that every irreducible closed subset Y of a scheme X has
a unique point η ∈ Y dense in Y : {η} = Y , called the generic point
of Y . Pick an affine open U ⊂ X such that U ∩ Y ̸= ∅ and let η be
the generic point of U ∩ Y . Then, since U ∩ Y is dense in Y , eta will
be a generic point of Y as well. On the other hand, any other generic
point η′ of Y will also be dense in U ∩ Y and thereby equal to η, as
V (η′) = V (η) implies η′ = η by the Nullstellensatz for affine schemes.

Then for an irreducible closed subset Y ⊂ X of codimension 1, we
define

vY (φ) := vη(φ).

Now, a principal divisor is the divisor of a rational function

divφ :=
∑

irred. Y ⊂X
codimY=1

vY (φ)[Y ].

Principal divisors form a subgroup PrinX of the group WeilX of Weil
divisiors.

Lemma 2. This is a finite sum.

Proof. It is enough to show finiteness for each irreducible component
of X, which means we can assume X is irreducible.

Let U = SpecA be an affine open subset on which φ is regular and
therefore φ ∈ A, φ ̸= 0. Then Z := X \ U is a proper closed subset of
X. Therefore, it contains a finite number of irreducible divisors. This
is because if Z is of codimension 0, it must be the whole X, which could
not be the case when Z is proper. If codimZ = 1, then an irreducible
divisor of X contained in Z must be an irreducible component of Z, of
which there are finitely many. If codimZ > 1, then it is too small to
contain an irreducible divisor of codimension 1.

Thus, every other divisor will intersect U = SpecA nontrivially, and
it is enough to show that there are finitely many divisors Y ⊂ U of
the Noetherian scheme U for which vY (φ) ̸= 0. This actually means
vY (φ) > 0, because φ is regular on U . So, we are again talking about
irreducible divisors contained in the proper closed set V (φ) ⊊ U , as
A is reduced and φ ̸= 0 cannot be contained in all prime ideals. The
same argument as for Z above shows that U contains finitely many
irreducible divisors. □

3. Line bundles and Weil divisors

Now, suppose s is a rational section of a line bundle L on X (i.e., s
is a regular section on a dense open subset, with a similar equivalence
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relation as for rational functions) and s is not the zero section on
any irreducible component of X, which is something I forgot to
mention in class. Then, for each irreducible closed Y ⊂ X, codimY =
1, we can trivialize L in a neighborhood U of the generic point of Y :
L|U ∼= OX |U . Then regular sections of L on open subsets of U will
be identified with regular functions with same domain, and hence, our
rational section s will be identified with a rational function on U . This
allows us to define the valuation of s at Y as above. It is independent
of the choice of trivialization, because any two trivializations differ by
an invertible function, whose valuation is zero.

Then the divisor of the rational section s is

div s :=
∑

irred. Y ⊂X
codimY=1

vY (s)[Y ].

The proof of the lemma above generalizes to show that this sum is
finite.

The set of isomorphism classes of such pairs (L, s) forms a group with
respect to ⊗ and (L, s)−1 = (L∨, s−1), s−1 being a rational section of

L∨ such that s−1(s) = 1 under evaluation L∨ ⊗ L ∼−→ OX . We have a
group homomorphism

{(L, s)}/isomorphism → WeilX,

(L, s) 7→ div s,

where

WeilX = {
∑

irred. Y
codimY=1

nY [Y ] | ny ∈ Z, nY = 0 for almost all Y }

is the group of Weil divisors with respect to addition. Since two rational
sections s and s′ of L differ by a rational function factor: s′ = φs
(since L ⊗ L−1 = OX), and vY (s

′) = vY (φ) + vY (s), we also have a
homomorphism

{L}/isomorphism → ClX,

where ClX := WeilX/PrinX.
The point of these is that these homomorphisms are isomorphisms

in good enough situations.


