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SASHA VORONOV

Here is brushed-up proof of duality between homology and cohomol-
ogy with field coefficients.

Theorem 1. If k is a field and K a simplicial complex, then

Hn(K; k) = (Hn(K; k))∗

for all values of n ≥ 0.

Proof. Step 1. For each n ≥ 0, we have a natural isomorphism Cn(K; k)
= Cn(K; k)∗ or HomZ(Cn(K;Z), k) = Homk(Cn(K; k), k), because
Cn(K;Z) is a free abelian group. It is freely generated by the set
Kn of n-simplices of K.

Step 2. Now we see that the cochain complex

· · · → Cn−1(K; k)
δn−→ Cn(K; k)

δn+1

−−→ Cn+1(K; k)→ . . .

is a complex of vector spaces linear dual to the chain complex

· · · → Cn+1(K; k)
∂n+1−−−→ Cn(K; k)

∂n−→ Cn−1(K; k)→ . . .

What remains to be shown is that the vector space Hn(K; k) =
Ker δn+1/ Im δn is the linear dual of Hn(K; k) = Ker ∂n/ Im ∂n+1.

Step 3. A remarkable thing about complexes of vector spaces is that
given a short exact sequence (SES) 0 → U → V → W → 0 of vector
spaces, the linear dual sequence 0 → W ∗ → V ∗ → U∗ → 0 is also
exact. This can be easily shown by splitting the given SES, that is to
say, presenting V as the direct sum of U and a complementary subspace
isomorphic to W , which gives V ∼= U ⊕W and thereby V ∗ ∼= U∗⊕W ∗,
yielding 0 → W ∗ → V ∗ → U∗ → 0. Such a complementary subspace
always exists: complete a basis of U to a basis of V , and take the
linear span of the basis vectors which are not in U . This works even
for infinite dimensional vector spaces, just requires the axiom of choice.
Our simplicial complexes need not be finite: Kn, which forms a basis
of Cn(K; k), could well be an infinite set of simplices (e.g., triangulate
R2 by tiling it into triangles).
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Step 3 is where the argument would break, should we try to use it for

abelian groups: dualize 0 → Z 2×−→ Z → Z2 → 0, that is to say, apply
HomZ(−,Z) or HomZ(−,Z2) and see what happens. This is why there
is no duality like that for homology and cohomology with arbitrary
abelian coefficients.

Step 4. We have an SES

0→ Im ∂n+1 → Ker ∂n → Hn → 0

This dualizes to an SES

0→ H∗
n → (Ker ∂n)∗ → (Im ∂n+1)

∗ → 0.

Step 5: (Im ∂n+1)
∗ = Im δn+1, because the linear map Cn+1

∂n+1−−−→ Cn

can be factored into ∂n+1 : Cn+1
∂n+1−−−→ Im ∂n+1 ↪→ Cn, which dualizes

to δn+1 : Cn � (Im ∂n+1)
∗ δn+1

−−→ Cn+1.
Step 6. (Ker ∂n)∗ = Cn/ Im δn, because the SES

0→ Ker ∂n → Cn → Im ∂n → 0

dualizes to an SES

0→ (Im ∂n)∗ → Cn → (Ker ∂n)∗ → 0

and (Im ∂n)∗ = Im δn, as we have seen earlier (for any n).
Step 7. Collecting the last two steps, we get an SES

0→ H∗
n → Cn/ Im δn → Im δn+1 → 0

with the last linear map being induced by δn+1. Thus, H∗
n may be

naturally identified with the kernel of this map, which is obviously
Ker δn+1/ Im δn = Hn. �


