Monday, 9/20

The problem set is due at the beginning of the class on Monday (on paper or by email). A ring R will always mean a commutative ring with unit, unless specified otherwise.

Reading:

http://www.math.umn.edu/~voronov/8306-21/syllabus.html.
Class notes.
Hatcher: Chapter 2 (pages $97-103$, skipping the notion of a Δ-complex, which we will not be using in the course, top of page 106, page 108, top paragraph of page 109, pages 111, 115-117, 5, 124, 137-141, 104-107, 128) and Chapter 3 (pages 218-219, 190-191, 197-201, simplicial and cellular cohomology on pages 202-203)]. Note the difference between the notion of a simplicial complex and that of a Δ-complex, discussed on p. 107.

Problem 1. Show that the boundary map $\partial: S_{q}(X, A ; R) \rightarrow S_{q-1}(X, A ; R)$, defining the relative singular chain complex, is well defined and squares to zero. Here $S_{q}(X, A ; R)=S_{q}(X ; R) / S_{q}(A ; R)$ is the relative singular chain group of a pair (X, A) with coefficients in a ring R. You may assume ∂ is defined for the absolute singular chain complex $S_{q}(Y ; R)$ for any space Y and that $\partial^{2}=0$ there.

Problem 2. Prove the cellular boundary formula describing the differential in cellular homology using the degree of a map between spheres by elaborating the argument that has been indicated in class on Friday, $9 / 10$, (with a bit more coming on Monday, $9 / 13$) or rephrasing the proof in the textbook on pp. 140-141.

Problem 3. Represent the torus T, pictured on pp. 5 and 102, as a cellular complex and compute its cellular homology with coefficients in a ring R.

Problem 4. Finish the computation of the simplicial homology of $\mathbf{R P}^{2}$ that we started in class on Wednesday, $9 / 15$. This is similar to Example 2.4 on p. 106, but you will have to use a triangulation of the torus T (presentation of it as a simplicial complex), such as the one we used in Wednesday class.

Problem 5. Exercise 5 on p. 131 of Hatcher with the change that you will need to compute the simplicial homology of a triangulation of the Klein bottle, pictured on pp. 19 and 102 , as in the previous problem. Do this for coefficients $R=\mathbb{Z}$, as well as $R=\mathbb{Z} / 2$.

Problem 6. Calculate the tensor product of two finitely generated abelian groups.
Problem 7. Calculate the group $\operatorname{Hom}_{\mathbb{Z}}(A, B)$ of homomorphisms of two finitely generated abelian groups A and B.

Problem 8. Find a left adjoint to the forgetful functor R-mod \rightarrow Set.
Problem 9. Identify $H^{0}(X ; \mathbb{Z})$ in terms of the topology of X. Show that $H_{0}(\mathbb{Q} ; \mathbb{Z}) \not \neq$ $H^{0}(\mathbb{Q} ; \mathbb{Z})$, where the set \mathbb{Q} of rationals is considered with the topology induced from the space \mathbb{R} of reals. (You may observe that the connected components and, therefore, path components of \mathbb{Q} are singletons, even though the topology is not discrete.)

