Posted: 9/25; Corrected: 9/29; due Friday, 10/1
The problem set is due at the beginning of the class on Friday (on paper or by email). A ring R will always mean a commutative ring with unit, unless specified otherwise.

Reading:

Class notes.
Hatcher: Chapter 2 (pages 144, 160-165, free resolutions in the middle of p. 195 and Ext at the bottom of p. 195 and top of p. 196), Chapter 3 (pages 190-193, 199-202, 215), Chapter 3.A (page 265).

Problem 1. Prove the Hurewicz theorem for the fundamental group by elementary means, i.e., construct a group homomorphism from the abelianization of the fundamental group of a path connected space to the first integral homology group along with an inverse homomorphism.
Problem 2. Compute the homology and cohomology of $\mathbf{R P}^{2}$ with coefficients in $\mathbb{Z} / 2$ without using the Universal Coefficient Theorem, even if we cover it by then. Use the cellular chain complex

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow 0
$$

with coefficients in \mathbb{Z} and treat $\mathbb{Z} / 2$ as a \mathbb{Z}-module. (Note that homology and cohomology are isomorphic. We will later learn that this is always the case for field coefficients.)

Problem 3. For a short exact sequence of R-modules

$$
0 \rightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \rightarrow 0,
$$

show that the splitting of α (i.e., finding a left inverse of it) is equivalent to splitting of β (i.e., finding a right inverse thereof). (We know in this case, $M \cong M^{\prime} \oplus M^{\prime \prime}$.)

Problem 4. Calculate the Tor and Ext for a pair of any finitely generated abelian groups. Deduce that if $\operatorname{tor}(A)$ denotes the torsion subgroup (the subgroup of finite-order elements), then $\operatorname{Tor}(A, B) \cong \operatorname{tor}(A) \otimes \operatorname{tor}(B)$ and $\operatorname{Ext}(A, B)=\operatorname{tor}(A) \otimes B$.

Problem 5. Deduce the Mayer-Vietoris sequence from p. 149 of the text (actually, think of the terms there as homology with coefficients in a given R-module M) from the (unreduced) homology axioms for pairs of spaces, like those axioms we talked about in class.

Problem 6. Exercise 40 on p. 159 of Hatcher.
Problem 7. The $G \xrightarrow{n} G$ part of Exercise 2 on p. 204 of Hatcher. (Use the axioms/properties of Ext, rather than resolutions: represent G as a quotient of a free abelian group).

