Math 8306Fall 2021Homework 3Posted: 10/08; typo in Problem 3 corrected 10/14; due Friday,
10/1510/14; due Friday,

The problem set is due at the beginning of the class on Friday (on paper or by email). A *ring* R will always mean a commutative ring with unit, unless specified otherwise.

Reading:

Class notes.

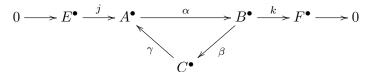
Hatcher: Chapter 2 (pages 144, 160–165), Chapter 3 (pp. 190–202, 215), Section 3.A (pp. 263–267), Section 3.F (pp. 317–318).

Rotman's *An Introduction to Homological Algebra* (available online through the library): pp. 325–327, 340–343, 346, 349–350, 353–354, 370, 372]

Problem 1. Show that $\operatorname{Hom}_{\mathbb{Z}}(R, I)$ is an injective *R*-module, if *I* is a divisible abelian group. [*Hint*: Use the injectivity of *I* as an abelian group.]

Problem 2. Prove the splicing lemma: If $A \to B \xrightarrow{\alpha} C \to 0$ and $0 \to C \xrightarrow{\beta} D \to E$ are exact, then $A \to B \xrightarrow{\beta \circ \alpha} D \to E$ is exact.

Problem 3. Suppose



is a diagram of graded *R*-modules (e.g., $A^{\bullet} = \bigoplus_{n \in \mathbb{Z}} A^n$) with the top row exact and the triangle exact. An *exact triangle* here means (1) the degree of β is 1, meaning $\beta(B^n) \subseteq C^{n+1}$ for all n, whereas all the other maps are of degree 0, and (2) ker $\beta = \operatorname{im} \alpha$, ker $\gamma = \operatorname{im} \beta$, and ker $\alpha = \operatorname{im} \gamma$. Prove that there is a short exact sequence

$$0 \to F^{\bullet} \xrightarrow{\beta k^{-1}} C^{\bullet} \xrightarrow{j^{-1} \gamma} E^{\bullet} \to 0$$

of graded *R*-modules (with $j^{-1}\gamma$ having degree 0 and βk^{-1} having degree 1).

Problem 4. Let $f : \mathbf{RP}^2 \to S^2$ be the map pinching the 1-skeleton of \mathbf{RP}^2 to a point. Compute the induced map on cohomology with coefficients in \mathbb{Z} and $\mathbb{Z}/2$ to see that the splitting of

$$0 \to \operatorname{Ext}_{R}(H_{n-1}(X,A;R),M) \to H^{n}(X,A;M) \to \operatorname{Hom}(H_{n}(X,A;R),M) \to 0$$

in the UCT for cohomology (for $R = \mathbb{Z}$, $M = \mathbb{Z}$ and $\mathbb{Z}/2$, $A = \emptyset$, and $X = \mathbb{RP}^2$ and S^2) to show that the splitting is not natural.

Problem 5 (A project worth 4 problems). Study the 6-page excerpt from Greenberg and Harper's textbook (see the Homework page) and

- (1) Formulate the acyclic models theorem;
- (2) Formulate the Eilenberg-Zilber theorem;
- (3) Deduce the Eilenberg-Zilber theorem from the acyclic models theorem.

Note that you will not need about 50% of the material of that excerpt.

 $\mathbf{2}$