The problem set is due at the beginning of the class on Friday (on paper or by email). A ring R will always mean a commutative ring with unit, unless specified otherwise.

Reading:

Class notes.
Hatcher: Chapter 2 (pages 144, 160-165), Chapter 3 (pp. 190-202, 215), Section 3.A (pp. 263-267), Section 3.F (pp. 317-318).
Rotman's An Introduction to Homological Algebra (available online through the library): pp. 325-327, 340-343, 346, 349-350, 353-354, 370, 372]

Problem 1. Show that $\operatorname{Hom}_{\mathbb{Z}}(R, I)$ is an injective R-module, if I is a divisible abelian group. [Hint: Use the injectivity of I as an abelian group.]

Problem 2. Prove the splicing lemma: If $A \rightarrow B \xrightarrow{\alpha} C \rightarrow 0$ and $0 \rightarrow C \xrightarrow{\beta}$ $D \rightarrow E$ are exact, then $A \rightarrow B \xrightarrow{\beta \circ \alpha} D \rightarrow E$ is exact.

Problem 3. Suppose

is a diagram of graded R-modules (e.g., $A^{\bullet}=\bigoplus_{n \in \mathbb{Z}} A^{n}$) with the top row exact and the triangle exact. An exact triangle here means (1) the degree of β is 1 , meaning $\beta\left(B^{n}\right) \subseteq C^{n+1}$ for all n, whereas all the other maps are of degree 0 , and (2) $\operatorname{ker} \beta=\operatorname{im} \alpha$, $\operatorname{ker} \gamma=\operatorname{im} \beta$, and $\operatorname{ker} \alpha=\operatorname{im} \gamma$. Prove that there is a short exact sequence

$$
0 \rightarrow F^{\bullet} \xrightarrow{\beta k^{-1}} C^{\bullet} \xrightarrow{j^{-1} \gamma} E^{\bullet} \rightarrow 0
$$

of graded R-modules (with $j^{-1} \gamma$ having degree 0 and βk^{-1} having degree 1).

Problem 4. Let $f: \mathbf{R P}^{2} \rightarrow S^{2}$ be the map pinching the 1 -skeleton of $\mathbf{R P}^{2}$ to a point. Compute the induced map on cohomology with coefficients in \mathbb{Z} and $\mathbb{Z} / 2$ to see that the splitting of

$$
0 \rightarrow \operatorname{Ext}_{R}\left(H_{n-1}(X, A ; R), M\right) \rightarrow H^{n}(X, A ; M) \rightarrow \operatorname{Hom}\left(H_{n}(X, A ; R), M\right) \rightarrow 0
$$

in the UCT for cohomology (for $R=\mathbb{Z}, M=\mathbb{Z}$ and $\mathbb{Z} / 2, A=\emptyset$, and $X=\mathbb{R} \mathbb{P}^{2}$ and S^{2}) to show that the splitting is not natural.
Problem 5 (A project worth 4 problems). Study the 6 -page excerpt from Greenberg and Harper's textbook (see the Homework page) and
(1) Formulate the acyclic models theorem;
(2) Formulate the Eilenberg-Zilber theorem;
(3) Deduce the Eilenberg-Zilber theorem from the acyclic models theorem.

Note that you will not need about 50% of the material of that excerpt.

